--- title: Run DeltaLake Connector using the CLI slug: /connectors/database/deltalake/cli --- # Run Deltalake using the metadata CLI {% multiTablesWrapper %} | Feature | Status | | :----------------- | :--------------------------- | | Stage | PROD | | Metadata | {% icon iconName="check" /%} | | Query Usage | {% icon iconName="cross" /%} | | Data Profiler | {% icon iconName="cross" /%} | | Data Quality | {% icon iconName="cross" /%} | | Lineage | Partially via Views | | DBT | {% icon iconName="cross" /%} | | Supported Versions | -- | | Feature | Status | | :----------- | :--------------------------- | | Lineage | Partially via Views | | Table-level | {% icon iconName="check" /%} | | Column-level | {% icon iconName="check" /%} | {% /multiTablesWrapper %} In this section, we provide guides and references to use the Deltalake connector. Configure and schedule Deltalake metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) - [dbt Integration](#dbt-integration) ## Requirements {%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%} To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment. ### Python Requirements To run the Deltalake ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[deltalake]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/deltaLakeConnection.json) you can find the structure to create a connection to Deltalake. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for Deltalake: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **Metastore Host Port**: Enter the Host & Port of Hive Metastore Service to configure the Spark Session. Either of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required. **Metastore File Path**: Enter the file path to local Metastore in case Spark cluster is running locally. Either of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required. **Metastore DB**: The JDBC connection to the underlying Hive metastore DB. Either of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required. **appName (Optional)**: Enter the app name of spark session. **Connection Arguments (Optional)**: Key-Value pairs that will be used to pass extra `config` elements to the Spark Session builder. We are internally running with `pyspark` 3.X and `delta-lake` 2.0.0. This means that we need to consider Spark configuration options for 3.X. ##### Metastore Host Port When connecting to an External Metastore passing the parameter `Metastore Host Port`, we will be preparing a Spark Session with the configuration ``` .config("hive.metastore.uris", "thrift://{connection.metastoreHostPort}") ``` Then, we will be using the `catalog` functions from the Spark Session to pick up the metadata exposed by the Hive Metastore. ##### Metastore File Path If instead we use a local file path that contains the metastore information (e.g., for local testing with the default `metastore_db` directory), we will set ``` .config("spark.driver.extraJavaOptions", "-Dderby.system.home={connection.metastoreFilePath}") ``` To update the `Derby` information. More information about this in a great [SO thread](https://stackoverflow.com/questions/38377188/how-to-get-rid-of-derby-log-metastore-db-from-spark-shell). - You can find all supported configurations [here](https://spark.apache.org/docs/latest/configuration.html) - If you need further information regarding the Hive metastore, you can find it [here](https://spark.apache.org/docs/3.0.0-preview/sql-data-sources-hive-tables.html), and in The Internals of Spark SQL [book](https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-hive-metastore.html). ##### Metastore Database You can also connect to the metastore by directly pointing to the Hive Metastore db, e.g., `jdbc:mysql://localhost:3306/demo_hive`. Here, we will need to inform all the common database settings (url, username, password), and the driver class name for JDBC metastore. You will need to provide the driver to the ingestion image, and pass the `classpath` which will be used in the Spark Configuration under `sparks.driver.extraClassPath`. {% /codeInfo %} #### Source Configuration - Source Config {% codeInfo srNumber=4 %} The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json): **markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system. **includeTables**: true or false, to ingest table data. Default is true. **includeViews**: true or false, to ingest views definitions. **databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database) {% /codeInfo %} #### Sink Configuration {% codeInfo srNumber=5 %} To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. {% /codeInfo %} #### Workflow Configuration {% codeInfo srNumber=6 %} The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation. For a simple, local installation using our docker containers, this looks like: {% /codeInfo %} #### Advanced Configuration {% codeInfo srNumber=2 %} **Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs. {% /codeInfo %} {% codeInfo srNumber=3 %} **Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs. - In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"` {% /codeInfo %} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml source: type: deltalake serviceName: "" serviceConnection: config: type: DeltaLake ``` ```yaml {% srNumber=1 %} metastoreConnection: # Pick only of the three ## 1. Hive Service Thrift Connection metastoreHostPort: "" ## 2. Hive Metastore db connection # metastoreDb: jdbc:mysql://localhost:3306/demo_hive # username: username # password: password # driverName: org.mariadb.jdbc.Driver # jdbcDriverClassPath: /some/path/ ## 3. Local file for Testing # metastoreFilePath: "/metastore_db" appName: MyApp ``` ```yaml {% srNumber=2 %} # connectionOptions: # key: value ``` ```yaml {% srNumber=3 %} # connectionArguments: # key: value ``` ```yaml {% srNumber=4 %} sourceConfig: config: type: DatabaseMetadata markDeletedTables: true includeTables: true includeViews: true # includeTags: true # databaseFilterPattern: # includes: # - database1 # - database2 # excludes: # - database3 # - database4 # schemaFilterPattern: # includes: # - schema1 # - schema2 # excludes: # - schema3 # - schema4 # tableFilterPattern: # includes: # - users # - type_test # excludes: # - table3 # - table4 ``` ```yaml {% srNumber=5 %} sink: type: metadata-rest config: {} ``` ```yaml {% srNumber=6 %} workflowConfig: openMetadataServerConfig: hostPort: "http://localhost:8585/api" authProvider: openmetadata securityConfig: jwtToken: "{bot_jwt_token}" ``` {% /codeBlock %} {% /codePreview %} ### Workflow Configs for Security Provider We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client). ## Openmetadata JWT Auth - JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens). ```yaml workflowConfig: openMetadataServerConfig: hostPort: "http://localhost:8585/api" authProvider: openmetadata securityConfig: jwtToken: "{bot_jwt_token}" ``` - You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth). ### 2. Run with the CLI First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run: ```bash metadata ingest -c ``` Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources. ## dbt Integration {% tilesContainer %} {% tile icon="mediation" title="dbt Integration" description="Learn more about how to ingest dbt models' definitions and their lineage." link="/connectors/ingestion/workflows/dbt" /%} {% /tilesContainer %} ## Related {% tilesContainer %} {% tile title="Ingest with Airflow" description="Configure the ingestion using Airflow SDK" link="/connectors/database/deltalake/airflow" / %} {% /tilesContainer %}