--- title: Run QuickSight Connector using the CLI slug: /connectors/dashboard/quicksight/cli --- # Run QuickSight using the metadata CLI | Stage | PROD | |------------|------------------------------| | Dashboards | {% icon iconName="check" /%} | | Charts | {% icon iconName="check" /%} | | Owners | {% icon iconName="cross" /%} | | Tags | {% icon iconName="cross" /%} | | Datamodels | {% icon iconName="cross" /%} | | Lineage | {% icon iconName="check" /%} | In this section, we provide guides and references to use the QuickSight connector. Configure and schedule QuickSight metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) ## Requirements {%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%} AWS QuickSight Permissions To execute metadata extraction and usage workflow successfully the IAM User should have enough access to fetch required data. Following table describes the minimum required permissions | # | AWS QuickSight Permission | | :---------- | :---------- | | 1 | DescribeDashboard | | 2 | ListAnalyses | | 3 | ListDataSources | | 4 | ListDashboards | | 5 | DescribeAnalysis | | 6 | DescribeDataSet | | 7 | ListDataSets | | 8 | DescribeDataSource | Here is how to add Permissions to an IAM user. - Navigate to the IAM console in the AWS Management Console. - Choose the IAM user or group to which you want to attach the policy, and click on the "Permissions" tab. - Click on the "Add permissions" button and select "Attach existing policies directly". - Search for the policy by name or by filtering the available policies, and select the one you want to attach. - Review the policy and click on "Add permissions" to complete the process. ```json { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "quicksight:DescribeDashboard", "quicksight:ListAnalyses", "quicksight:ListDataSources", "quicksight:ListDashboards", "quicksight:DescribeAnalysis", "quicksight:DescribeDataSet", "quicksight:ListDataSets", "quicksight:DescribeDataSource" ], "Resource": "*" } ] } ``` To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment. ### Python Requirements To run the QuickSight ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[quicksight]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/dashboard/quickSightConnection.json) you can find the structure to create a connection to QuickSight. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is QuickSightled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for QuickSight: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **awsConfig** - **AWS Access Key ID**: Enter your secure access key ID for your Glue connection. The specified key ID should be authorized to read all databases you want to include in the metadata ingestion workflow. - **AWS Secret Access Key**: Enter the Secret Access Key (the passcode key pair to the key ID from above). - **AWS Region**: Enter the location of the amazon cluster that your data and account are associated with. - **AWS Session Token (optional)**: The AWS session token is an optional parameter. If you want, enter the details of your temporary session token. - **Endpoint URL (optional)**: Your Glue connector will automatically determine the AWS QuickSight endpoint URL based on the region. You may override this behavior by entering a value to the endpoint URL. {% /codeInfo %} {% codeInfo srNumber=2 %} **awsAccountId**: AWS Account ID {% /codeInfo %} {% codeInfo srNumber=3 %} **identityType**: The authentication method that the user uses to sign in. {% /codeInfo %} {% codeInfo srNumber=4 %} **namespace**: The Amazon QuickSight namespace that contains the dashboard IDs in this request ( To be provided when identityType is `ANONYMOUS` ) {% /codeInfo %} #### Source Configuration - Source Config {% codeInfo srNumber=5 %} The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/dashboardServiceMetadataPipeline.json): - **dbServiceNames**: Database Service Names for ingesting lineage if the source supports it. - **dashboardFilterPattern**, **chartFilterPattern**, **dataModelFilterPattern**: Note that all of them support regex as include or exclude. E.g., "My dashboard, My dash.*, .*Dashboard". - **includeOwners**: Set the 'Include Owners' toggle to control whether to include owners to the ingested entity if the owner email matches with a user stored in the OM server as part of metadata ingestion. If the ingested entity already exists and has an owner, the owner will not be overwritten. - **includeTags**: Set the 'Include Tags' toggle to control whether to include tags in metadata ingestion. - **includeDataModels**: Set the 'Include Data Models' toggle to control whether to include tags as part of metadata ingestion. - **markDeletedDashboards**: Set the 'Mark Deleted Dashboards' toggle to flag dashboards as soft-deleted if they are not present anymore in the source system. {% /codeInfo %} #### Sink Configuration {% codeInfo srNumber=6 %} To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. {% /codeInfo %} {% partial file="workflow-config.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml source: type: quicksight serviceName: local_quicksight serviceConnection: config: type: QuickSight ``` ```yaml {% srNumber=1 %} awsConfig: awsAccessKeyId: KEY awsSecretAccessKey: SECRET awsRegion: us-east-2 awsSessionToken: Token ``` ```yaml {% srNumber=2 %} awsAccountId: ``` ```yaml {% srNumber=3 %} identityType: IAM #QUICKSIGHT, ANONYMOUS ``` ```yaml {% srNumber=4 %} namespace: #to be provided if identityType is Anonymous ``` ```yaml {% srNumber=5 %} sourceConfig: config: type: DashboardMetadata markDeletedDashboards: True # dbServiceNames: # - service1 # - service2 # dashboardFilterPattern: # includes: # - dashboard1 # - dashboard2 # excludes: # - dashboard3 # - dashboard4 # chartFilterPattern: # includes: # - chart1 # - chart2 # excludes: # - chart3 # - chart4 ```yaml {% srNumber=6 %} sink: type: metadata-rest config: {} ``` {% partial file="workflow-config-yaml.md" /%} {% /codeBlock %} {% /codePreview %} ### 2. Run with the CLI First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run: ```bash metadata ingest -c ``` Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.