--- title: Run MongoDB Connector using Airflow SDK slug: /connectors/database/mongodb/airflow --- # Run MongoDB using the Airflow SDK {% multiTablesWrapper %} | Feature | Status | | :----------------- | :--------------------------- | | Stage | PROD | | Metadata | {% icon iconName="check" /%} | | Query Usage | {% icon iconName="cross" /%} | | Data Profiler | {% icon iconName="cross" /%} | | Data Quality | {% icon iconName="cross" /%} | | Lineage | {% icon iconName="cross" /%} | | DBT | {% icon iconName="cross" /%} | | Supported Versions | -- | | Feature | Status | | :----------- | :--------------------------- | | Lineage | {% icon iconName="cross" /%} | | Table-level | {% icon iconName="cross" /%} | | Column-level | {% icon iconName="cross" /%} | {% /multiTablesWrapper %} In this section, we provide guides and references to use the MongoDB connector. Configure and schedule MongoDB metadata workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) ## Requirements {%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%} To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment. To fetch the metadata from MongoDB to OpenMetadata, the MongoDB user must have access to perform `find` operation on collection and `listCollection` operations on database available in MongoDB. ### Python Requirements To run the MongoDB ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[mongo]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/mongoDBConnection.json) you can find the structure to create a connection to MongoDB. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for MongoDB: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **username**: Username to connect to Mongodb. This user must have access to perform `find` operation on collection and `listCollection` operations on database available in MongoDB. {% /codeInfo %} {% codeInfo srNumber=2 %} **password**: Password to connect to MongoDB. {% /codeInfo %} {% codeInfo srNumber=3 %} **hostPort**: The hostPort parameter specifies the host and port of the MongoDB. This should be specified as a string in the format `hostname:port`. E.g., `localhost:27017`. {% /codeInfo %} {% codeInfo srNumber=5 %} **connectionURI**: MongoDB connection string is a concise string of parameters used to establish a connection between an OpenMetadata and a MongoDB database. For ex. `mongodb://username:password@mongodb0.example.com:27017`. {% /codeInfo %} {% codeInfo srNumber=6 %} **databaseName**: Optional name to give to the database in OpenMetadata. If left blank, we will use default as the database name. {% /codeInfo %} #### Source Configuration - Source Config {% codeInfo srNumber=9 %} The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json): **markDeletedTables**: To flag tables as soft-deleted if they are not present anymore in the source system. **includeTables**: true or false, to ingest table data. Default is true. **includeViews**: true or false, to ingest views definitions. **databaseFilterPattern**, **schemaFilterPattern**, **tableFilternPattern**: Note that the filter supports regex as include or exclude. You can find examples [here](/connectors/ingestion/workflows/metadata/filter-patterns/database) {% /codeInfo %} #### Sink Configuration {% codeInfo srNumber=10 %} To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. {% /codeInfo %} {% partial file="workflow-config.md" /%} #### Advanced Configuration {% codeInfo srNumber=7 %} **Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs. {% /codeInfo %} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml source: type: mongodb serviceName: local_mongodb serviceConnection: config: type: MongoDB connectionDetails: ``` ```yaml {% srNumber=1 %} username: username ``` ```yaml {% srNumber=2 %} password: password ``` ```yaml {% srNumber=3 %} hostPort: localhost:27017 ``` ```yaml {% srNumber=5 %} # connectionURI: mongodb://username:password@mongodb0.example.com:27017 ``` ```yaml {% srNumber=7 %} # connectionOptions: # key: value ``` ```yaml {% srNumber=6 %} database: custom_database_name ``` ```yaml {% srNumber=9 %} sourceConfig: config: type: DatabaseMetadata markDeletedTables: true includeTables: true includeViews: true # includeTags: true # databaseFilterPattern: # includes: # - database1 # - database2 # excludes: # - database3 # - database4 # schemaFilterPattern: # includes: # - schema1 # - schema2 # excludes: # - schema3 # - schema4 # tableFilterPattern: # includes: # - users # - type_test # excludes: # - table3 # - table4 ``` ```yaml {% srNumber=10 %} sink: type: metadata-rest config: {} ``` {% partial file="workflow-config-yaml.md" /%} {% /codeBlock %} {% /codePreview %} ### 2. Prepare the Ingestion DAG Create a Python file in your Airflow DAGs directory with the following contents: {% codePreview %} {% codeInfoContainer %} {% codeInfo srNumber=12 %} #### Import necessary modules The `Workflow` class that is being imported is a part of a metadata ingestion framework, which defines a process of getting data from different sources and ingesting it into a central metadata repository. Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG. {% /codeInfo %} {% codeInfo srNumber=13 %} **Default arguments for all tasks in the Airflow DAG.** - Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout. {% /codeInfo %} {% codeInfo srNumber=14 %} - **config**: Specifies config for the metadata ingestion as we prepare above. {% /codeInfo %} {% codeInfo srNumber=15 %} - **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `Workflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow. {% /codeInfo %} {% codeInfo srNumber=16 %} - **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements - For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag). {% /codeInfo %} Note that from connector to connector, this recipe will always be the same. By updating the `YAML configuration`, you will be able to extract metadata from different sources. {% /codeInfoContainer %} {% codeBlock fileName="filename.py" %} ```python {% srNumber=12 %} import pathlib import yaml from datetime import timedelta from airflow import DAG from metadata.config.common import load_config_file from metadata.ingestion.api.workflow import Workflow from airflow.utils.dates import days_ago try: from airflow.operators.python import PythonOperator except ModuleNotFoundError: from airflow.operators.python_operator import PythonOperator ``` ```python {% srNumber=13 %} default_args = { "owner": "user_name", "email": ["username@org.com"], "email_on_failure": False, "retries": 3, "retry_delay": timedelta(minutes=5), "execution_timeout": timedelta(minutes=60) } ``` ```python {% srNumber=14 %} config = """ """ ``` ```python {% srNumber=15 %} def metadata_ingestion_workflow(): workflow_config = yaml.safe_load(config) workflow = Workflow.create(workflow_config) workflow.execute() workflow.raise_from_status() workflow.print_status() workflow.stop() ``` ```python {% srNumber=16 %} with DAG( "sample_data", default_args=default_args, description="An example DAG which runs a OpenMetadata ingestion workflow", start_date=days_ago(1), is_paused_upon_creation=False, schedule_interval='*/5 * * * *', catchup=False, ) as dag: ingest_task = PythonOperator( task_id="ingest_using_recipe", python_callable=metadata_ingestion_workflow, ) ``` {% /codeBlock %} {% /codePreview %} ## dbt Integration {% tilesContainer %} {% tile icon="mediation" title="dbt Integration" description="Learn more about how to ingest dbt models' definitions and their lineage." link="/connectors/ingestion/workflows/dbt" /%} {% /tilesContainer %} ## Related {% tilesContainer %} {% tile title="Ingest with the CLI" description="Run a one-time ingestion using the metadata CLI" link="/connectors/database/mongodb/cli" / %} {% /tilesContainer %}