# Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test Datalake Profiler workflow To run this we need OpenMetadata server up and running. No sample data is required beforehand """ import pytest from ingestion.tests.integration.datalake.conftest import BUCKET_NAME from metadata.generated.schema.entity.data.table import ColumnProfile, Table from metadata.utils.time_utils import ( get_beginning_of_day_timestamp_mill, get_end_of_day_timestamp_mill, ) from metadata.workflow.profiler import ProfilerWorkflow from metadata.workflow.workflow_output_handler import WorkflowResultStatus @pytest.fixture(scope="class", autouse=True) def before_each(run_ingestion): pass class TestDatalakeProfilerTestE2E: """datalake profiler E2E test""" def test_datalake_profiler_workflow(self, ingestion_config, metadata): ingestion_config["source"]["sourceConfig"]["config"].update( { "type": "Profiler", } ) ingestion_config["processor"] = { "type": "orm-profiler", "config": {}, } profiler_workflow = ProfilerWorkflow.create(ingestion_config) profiler_workflow.execute() status = profiler_workflow.result_status() profiler_workflow.stop() assert status == WorkflowResultStatus.SUCCESS table_profile = metadata.get_profile_data( f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', get_beginning_of_day_timestamp_mill(), get_end_of_day_timestamp_mill(), ) column_profile = metadata.get_profile_data( f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".first_name', get_beginning_of_day_timestamp_mill(), get_end_of_day_timestamp_mill(), profile_type=ColumnProfile, ) assert table_profile.entities assert column_profile.entities def test_values_partitioned_datalake_profiler_workflow( self, metadata, ingestion_config ): """Test partitioned datalake profiler workflow""" ingestion_config["source"]["sourceConfig"]["config"].update( { "type": "Profiler", } ) ingestion_config["processor"] = { "type": "orm-profiler", "config": { "tableConfig": [ { "fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', "partitionConfig": { "enablePartitioning": "true", "partitionColumnName": "first_name", "partitionIntervalType": "COLUMN-VALUE", "partitionValues": ["John"], }, } ] }, } profiler_workflow = ProfilerWorkflow.create(ingestion_config) profiler_workflow.execute() status = profiler_workflow.result_status() profiler_workflow.stop() assert status == WorkflowResultStatus.SUCCESS table = metadata.get_by_name( entity=Table, fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', fields=["tableProfilerConfig"], nullable=False, ) profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile assert profile.rowCount == 1.0 def test_datetime_partitioned_datalake_profiler_workflow( self, ingestion_config, metadata ): """Test partitioned datalake profiler workflow""" ingestion_config["source"]["sourceConfig"]["config"].update( { "type": "Profiler", } ) ingestion_config["processor"] = { "type": "orm-profiler", "config": { "tableConfig": [ { "fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', "partitionConfig": { "enablePartitioning": "true", "partitionColumnName": "birthdate", "partitionIntervalType": "TIME-UNIT", "partitionIntervalUnit": "YEAR", "partitionInterval": 35, }, } ], }, } profiler_workflow = ProfilerWorkflow.create(ingestion_config) profiler_workflow.execute() status = profiler_workflow.result_status() profiler_workflow.stop() assert status == WorkflowResultStatus.SUCCESS table = metadata.get_by_name( entity=Table, fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', fields=["tableProfilerConfig"], ) profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile assert profile.rowCount == 2.0 def test_integer_range_partitioned_datalake_profiler_workflow( self, ingestion_config, metadata ): """Test partitioned datalake profiler workflow""" ingestion_config["source"]["sourceConfig"]["config"].update( { "type": "Profiler", } ) ingestion_config["processor"] = { "type": "orm-profiler", "config": { "tableConfig": [ { "fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', "profileSample": 100, "partitionConfig": { "enablePartitioning": "true", "partitionColumnName": "age", "partitionIntervalType": "INTEGER-RANGE", "partitionIntegerRangeStart": 35, "partitionIntegerRangeEnd": 44, }, } ], }, } profiler_workflow = ProfilerWorkflow.create(ingestion_config) profiler_workflow.execute() status = profiler_workflow.result_status() profiler_workflow.stop() assert status == WorkflowResultStatus.SUCCESS table = metadata.get_by_name( entity=Table, fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', fields=["tableProfilerConfig"], ) profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile assert profile.rowCount == 2.0 def test_datalake_profiler_workflow_with_custom_profiler_config( self, metadata, ingestion_config ): """Test custom profiler config return expected sample and metric computation""" profiler_metrics = [ "MIN", "MAX", "MEAN", "MEDIAN", ] id_metrics = ["MIN", "MAX"] non_metric_values = ["name", "timestamp"] ingestion_config["source"]["sourceConfig"]["config"].update( { "type": "Profiler", } ) ingestion_config["processor"] = { "type": "orm-profiler", "config": { "profiler": { "name": "ingestion_profiler", "metrics": profiler_metrics, }, "tableConfig": [ { "fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', "columnConfig": { "includeColumns": [ {"columnName": "id", "metrics": id_metrics}, {"columnName": "age"}, ] }, } ], }, } profiler_workflow = ProfilerWorkflow.create(ingestion_config) profiler_workflow.execute() status = profiler_workflow.result_status() profiler_workflow.stop() assert status == WorkflowResultStatus.SUCCESS table = metadata.get_by_name( entity=Table, fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', fields=["tableProfilerConfig"], ) id_profile = metadata.get_profile_data( f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".id', get_beginning_of_day_timestamp_mill(), get_end_of_day_timestamp_mill(), profile_type=ColumnProfile, ).entities latest_id_profile = max(id_profile, key=lambda o: o.timestamp.root) id_metric_ln = 0 for metric_name, metric in latest_id_profile: if metric_name.upper() in id_metrics: assert metric is not None id_metric_ln += 1 else: assert metric is None if metric_name not in non_metric_values else True assert id_metric_ln == len(id_metrics) age_profile = metadata.get_profile_data( f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".age', get_beginning_of_day_timestamp_mill(), get_end_of_day_timestamp_mill(), profile_type=ColumnProfile, ).entities latest_age_profile = max(age_profile, key=lambda o: o.timestamp.root) age_metric_ln = 0 for metric_name, metric in latest_age_profile: if metric_name.upper() in profiler_metrics: assert metric is not None age_metric_ln += 1 else: assert metric is None if metric_name not in non_metric_values else True assert age_metric_ln == len(profiler_metrics) latest_exc_timestamp = latest_age_profile.timestamp.root first_name_profile = metadata.get_profile_data( f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".first_name_profile', get_beginning_of_day_timestamp_mill(), get_end_of_day_timestamp_mill(), profile_type=ColumnProfile, ).entities assert not [ p for p in first_name_profile if p.timestamp.root == latest_exc_timestamp ] sample_data = metadata.get_sample_data(table) assert sorted([c.root for c in sample_data.sampleData.columns]) == sorted( ["id", "age"] )