# Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test Profiler behavior """ import os from datetime import datetime from unittest import TestCase, mock from uuid import uuid4 import pytest import sqlalchemy.types from sqlalchemy import Column, Integer, String from sqlalchemy.orm import declarative_base from metadata.generated.schema.api.data.createTableProfile import ( CreateTableProfileRequest, ) from metadata.generated.schema.entity.data.table import Column as EntityColumn from metadata.generated.schema.entity.data.table import ( ColumnName, ColumnProfile, ColumnProfilerConfig, DataType, Histogram, Table, TableProfile, TableProfilerConfig, ) from metadata.generated.schema.entity.services.connections.database.datalakeConnection import ( DatalakeConnection, ) from metadata.generated.schema.type.basic import Timestamp from metadata.generated.schema.type.entityReference import EntityReference from metadata.ingestion.source import sqa_types from metadata.profiler.interface.pandas.profiler_interface import ( PandasProfilerInterface, ) from metadata.profiler.metrics.core import MetricTypes, add_props from metadata.profiler.metrics.registry import Metrics from metadata.profiler.processor.core import MissingMetricException, Profiler from metadata.profiler.processor.default import DefaultProfiler Base = declarative_base() class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String(256)) fullname = Column(String(256)) nickname = Column(String(256)) age = Column(Integer) class FakeClient: def __init__(self): self._client = None class FakeConnection: def __init__(self): self.client = FakeClient() class ProfilerTest(TestCase): """ Run checks on different metrics """ import pandas as pd col_names = [ "name", "fullname", "nickname", "comments", "age", "dob", "tob", "doe", "json", "array", ] root_dir = os.path.dirname(os.path.abspath(__file__)) csv_dir = "../custom_csv" df1 = pd.read_csv( os.path.join(root_dir, csv_dir, "test_datalake_metrics_1.csv"), names=col_names ) df2 = pd.read_csv( os.path.join(root_dir, csv_dir, "test_datalake_metrics_2.csv"), names=col_names ) table_entity = Table( id=uuid4(), name="user", databaseSchema=EntityReference(id=uuid4(), type="databaseSchema", name="name"), fileFormat="csv", columns=[ EntityColumn( name=ColumnName("name"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("fullname"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("nickname"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("comments"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("age"), dataType=DataType.INT, ), EntityColumn( name=ColumnName("dob"), dataType=DataType.DATETIME, ), EntityColumn( name=ColumnName("tob"), dataType=DataType.DATE, ), EntityColumn( name=ColumnName("doe"), dataType=DataType.DATE, ), EntityColumn( name=ColumnName("json"), dataType=DataType.JSON, ), EntityColumn( name=ColumnName("array"), dataType=DataType.ARRAY, ), ], ) @classmethod @mock.patch( "metadata.profiler.interface.profiler_interface.get_ssl_connection", return_value=FakeConnection(), ) @mock.patch( "metadata.mixins.pandas.pandas_mixin.fetch_dataframe", return_value=[df1, pd.concat([df2, pd.DataFrame(index=df1.index)])], ) def setUpClass(cls, mock_get_connection, mocked_dfs): cls.datalake_profiler_interface = PandasProfilerInterface( entity=cls.table_entity, service_connection_config=DatalakeConnection(configSource={}), storage_config=None, ometa_client=None, thread_count=None, profile_sample_config=None, source_config=None, sample_query=None, table_partition_config=None, ) def test_default_profiler(self): """ Check our pre-cooked profiler """ simple = DefaultProfiler( profiler_interface=self.datalake_profiler_interface, ) simple.compute_metrics() profile = simple.get_profile() assert profile.tableProfile.rowCount == 6 assert profile.tableProfile.columnCount == 10 age_profile = next( ( col_profile for col_profile in profile.columnProfile if col_profile.name == "age" ), None, ) assert age_profile == ColumnProfile( name="age", timestamp=age_profile.timestamp, valuesCount=4.0, valuesPercentage=None, validCount=None, duplicateCount=None, nullCount=2.0, nullProportion=0.3333333333333333, missingPercentage=None, missingCount=None, uniqueCount=2.0, uniqueProportion=0.5, distinctCount=3.0, distinctProportion=0.75, min=30.0, max=32.0, minLength=None, maxLength=None, mean=31.0, sum=124.0, stddev=0.816496580927726, variance=None, median=31.0, firstQuartile=30.5, thirdQuartile=31.5, interQuartileRange=1.0, nonParametricSkew=0.0, histogram=Histogram( boundaries=["30.000 to 31.260", "31.260 and up"], frequencies=[3, 1] ), ) def test_required_metrics(self): """ Check that we raise properly MissingMetricException when not building the profiler with all the required ingredients """ like = add_props(expression="J%")(Metrics.LIKE_COUNT.value) count = Metrics.COUNT.value like_ratio = Metrics.LIKE_RATIO.value # This should run properly Profiler( like, count, like_ratio, profiler_interface=self.datalake_profiler_interface, ) with pytest.raises(MissingMetricException): # We are missing ingredients here Profiler( like, like_ratio, profiler_interface=self.datalake_profiler_interface, ) def test_skipped_types(self): """ Check that we are properly skipping computations for not supported types """ class NotCompute(Base): __tablename__ = "not_compute" id = Column(Integer, primary_key=True) null_col = Column(sqlalchemy.types.NULLTYPE) array_col = Column(sqlalchemy.ARRAY(Integer, dimensions=2)) json_col = Column(sqlalchemy.JSON) map_col = Column(sqa_types.SQAMap) struct_col = Column(sqa_types.SQAStruct) profiler = Profiler( Metrics.COUNT.value, profiler_interface=self.datalake_profiler_interface, ) assert not profiler.column_results def test__check_profile_and_handle(self): """test _check_profile_and_handle returns as expected""" profiler = Profiler( Metrics.COUNT.value, profiler_interface=self.datalake_profiler_interface, ) profiler._check_profile_and_handle( CreateTableProfileRequest( tableProfile=TableProfile( timestamp=Timestamp(int(datetime.now().timestamp())), columnCount=10 ) ) ) with pytest.raises(Exception): profiler._check_profile_and_handle( CreateTableProfileRequest( tableProfile=TableProfile( timestamp=Timestamp(int(datetime.now().timestamp())), profileSample=100, ) ) ) def test_profiler_get_col_metrics(self): """check getc column metrics""" metric_filter = ["mean", "min", "max", "firstQuartile"] self.datalake_profiler_interface.table_entity.tableProfilerConfig = ( TableProfilerConfig( includeColumns=[ ColumnProfilerConfig(columnName="age", metrics=metric_filter) ] ) ) # type: ignore default_profiler = DefaultProfiler( profiler_interface=self.datalake_profiler_interface, ) column_metrics = default_profiler._prepare_column_metrics() for metric in column_metrics: if ( metric.metric_type is not MetricTypes.Table and metric.column.name == "id" ): assert all(metric_filter.count(m.name()) for m in metric.metrics)