# Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test Sample behavior """ import os from unittest import TestCase from unittest.mock import patch from uuid import uuid4 from sqlalchemy import TEXT, Column, Integer, String, func from sqlalchemy.orm import declarative_base from metadata.generated.schema.entity.data.table import Column as EntityColumn from metadata.generated.schema.entity.data.table import ColumnName, DataType, Table from metadata.generated.schema.entity.services.connections.database.sqliteConnection import ( SQLiteConnection, SQLiteScheme, ) from metadata.profiler.api.models import ProfileSampleConfig from metadata.profiler.interface.sqlalchemy.profiler_interface import ( SQAProfilerInterface, ) from metadata.profiler.metrics.registry import Metrics from metadata.profiler.orm.registry import CustomTypes from metadata.profiler.processor.core import Profiler from metadata.profiler.processor.sampler.sqlalchemy.sampler import SQASampler Base = declarative_base() class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String(256)) fullname = Column(String(256)) nickname = Column(String(256)) comments = Column(TEXT) age = Column(Integer) class SampleTest(TestCase): """ Run checks on different metrics """ db_path = os.path.join( os.path.dirname(__file__), f"{os.path.splitext(__file__)[0]}.db" ) sqlite_conn = SQLiteConnection( scheme=SQLiteScheme.sqlite_pysqlite, databaseMode=db_path + "?check_same_thread=False", ) table_entity = Table( id=uuid4(), name="user", columns=[ EntityColumn( name=ColumnName("id"), dataType=DataType.INT, ), EntityColumn( name=ColumnName("name"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("fullname"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("nickname"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("comments"), dataType=DataType.STRING, ), EntityColumn( name=ColumnName("age"), dataType=DataType.INT, ), ], ) with patch.object( SQAProfilerInterface, "_convert_table_to_orm_object", return_value=User ): sqa_profiler_interface = SQAProfilerInterface( sqlite_conn, None, table_entity, None, None, None, None, None, 5, 43200 ) engine = sqa_profiler_interface.session.get_bind() session = sqa_profiler_interface.session @classmethod def setUpClass(cls) -> None: """ Prepare Ingredients """ User.__table__.create(bind=cls.engine) # Insert 30 rows for i in range(10): data = [ User( name="John", fullname="John Doe", nickname="johnny b goode", comments="no comments", age=30, ), User( name="Jane", fullname="Jone Doe", nickname=None, comments="maybe some comments", age=31, ), User( name="John", fullname="John Doe", nickname=None, comments=None, age=None, ), ] cls.session.add_all(data) cls.session.commit() def test_random_sampler(self): """ The random sampler should be able to generate a random subset of data """ sampler = SQASampler( client=self.session, table=User, profile_sample_config=ProfileSampleConfig(profile_sample=50.0), ) random_sample = sampler.random_sample() res = self.session.query(func.count()).select_from(random_sample).first() assert res[0] < 30 def test_sample_property(self): """ Sample property should be properly generated """ # Randomly pick table_count to init the Profiler, we don't care for this test with patch.object( SQAProfilerInterface, "_convert_table_to_orm_object", return_value=User ): sqa_profiler_interface = SQAProfilerInterface( self.sqlite_conn, None, self.table_entity, None, ProfileSampleConfig(profile_sample=50.0), None, None, None, ) sample = sqa_profiler_interface._create_thread_safe_sampler( self.session, User ).random_sample() res = self.session.query(func.count()).select_from(sample).first() assert res[0] < 30 def test_table_row_count(self): """ Profile sample should be ignored in row count """ table_count = Metrics.ROW_COUNT.value profiler = Profiler( table_count, profiler_interface=self.sqa_profiler_interface, ) res = profiler.compute_metrics()._table_results assert res.get(Metrics.ROW_COUNT.name) == 30 def test_random_sample_count(self): """ Check we can properly sample data. There's a random component, so we cannot ensure to always get 15 rows, but for sure we should get less than 30. """ count = Metrics.COUNT.value with patch.object( SQAProfilerInterface, "_convert_table_to_orm_object", return_value=User ): profiler = Profiler( count, profiler_interface=SQAProfilerInterface( self.sqlite_conn, None, self.table_entity, None, ProfileSampleConfig(profile_sample=50), None, None, None, ), ) res = profiler.compute_metrics()._column_results assert res.get(User.name.name)[Metrics.COUNT.name] < 30 def test_random_sample_histogram(self): """ Histogram should run correctly """ hist = Metrics.HISTOGRAM.value count = Metrics.COUNT.value min = Metrics.MIN.value max = Metrics.MAX.value first_quartile = Metrics.FIRST_QUARTILE.value third_quartile = Metrics.THIRD_QUARTILE.value iqr = Metrics.IQR.value with patch.object( SQAProfilerInterface, "_convert_table_to_orm_object", return_value=User ): profiler = Profiler( hist, count, min, max, first_quartile, third_quartile, iqr, profiler_interface=SQAProfilerInterface( self.sqlite_conn, None, self.table_entity, None, ProfileSampleConfig(profile_sample=50), None, None, None, ), ) res = profiler.compute_metrics()._column_results # The sum of all frequencies should be sampled assert sum(res.get(User.id.name)[Metrics.HISTOGRAM.name]["frequencies"]) < 30 profiler = Profiler( hist, count, min, max, first_quartile, third_quartile, iqr, profiler_interface=self.sqa_profiler_interface, ) res = profiler.compute_metrics()._column_results # The sum of all frequencies should be sampled assert sum(res.get(User.id.name)[Metrics.HISTOGRAM.name]["frequencies"]) == 30.0 def test_random_sample_unique_count(self): """ Unique count should run correctly """ hist = Metrics.UNIQUE_COUNT.value profiler = Profiler( hist, profiler_interface=self.sqa_profiler_interface, ) res = profiler.compute_metrics()._column_results # As we repeat data, we expect 0 unique counts. # This tests might very rarely, fail, depending on the sampled random data. assert res.get(User.name.name)[Metrics.UNIQUE_COUNT.name] <= 1 profiler = Profiler( hist, profiler_interface=self.sqa_profiler_interface, ) res = profiler.compute_metrics()._column_results # As we repeat data, we expect 0 unique counts. # This tests might very rarely, fail, depending on the sampled random data. assert res.get(User.name.name)[Metrics.UNIQUE_COUNT.name] == 0 def test_sample_data(self): """ We should be able to pick up sample data from the sampler """ sampler = SQASampler( client=self.session, table=User, ) sample_data = sampler.fetch_sample_data() assert len(sample_data.columns) == 6 assert len(sample_data.rows) == 30 # Order matters, this is how we'll present the data names = [str(col.root) for col in sample_data.columns] assert names == ["id", "name", "fullname", "nickname", "comments", "age"] def test_sample_data_binary(self): """ We should be able to pick up sample data from the sampler """ class UserBinary(Base): __tablename__ = "users_binary" id = Column(Integer, primary_key=True) name = Column(String(256)) fullname = Column(String(256)) nickname = Column(String(256)) comments = Column(TEXT) age = Column(Integer) password_hash = Column(CustomTypes.BYTES.value) UserBinary.__table__.create(bind=self.engine) for i in range(10): data = [ UserBinary( name="John", fullname="John Doe", nickname="johnny b goode", comments="no comments", age=30, password_hash=b"foo", ), ] self.session.add_all(data) self.session.commit() sampler = SQASampler( client=self.session, table=UserBinary, ) sample_data = sampler.fetch_sample_data() assert len(sample_data.columns) == 7 assert len(sample_data.rows) == 10 names = [str(col.root) for col in sample_data.columns] assert names == [ "id", "name", "fullname", "nickname", "comments", "age", "password_hash", ] assert type(sample_data.rows[0][6]) == str UserBinary.__table__.drop(bind=self.engine) def test_sample_from_user_query(self): """ Test sample data are returned based on user query """ stmt = "SELECT id, name FROM users" sampler = SQASampler( client=self.session, table=User, profile_sample_query=stmt, ) sample_data = sampler.fetch_sample_data() assert len(sample_data.columns) == 2 names = [col.root for col in sample_data.columns] assert names == ["id", "name"] @classmethod def tearDownClass(cls) -> None: os.remove(cls.db_path) return super().tearDownClass()