--- title: Run the Datalake Connector Externally slug: /connectors/database/datalake/yaml --- {% connectorDetailsHeader name="Datalake" stage="PROD" platform="OpenMetadata" availableFeatures=["Metadata", "Data Profiler", "Data Quality"] unavailableFeatures=["Query Usage", "Lineage", "Column-level Lineage", "Owners", "dbt", "Tags", "Stored Procedures"] / %} In this section, we provide guides and references to use the Datalake connector. Configure and schedule Datalake metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) - [dbt Integration](#dbt-integration) {% partial file="/v1.4/connectors/external-ingestion-deployment.md" /%} ## Requirements **Note:** Datalake connector supports extracting metadata from file types `JSON`, `CSV`, `TSV` & `Parquet`. ### S3 Permissions To execute metadata extraction AWS account should have enough access to fetch required data. The Bucket Policy in AWS requires at least these permissions: ```json { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::", "arn:aws:s3:::/*" ] } ] } ``` ### ADLS Permissions To extract metadata from Azure ADLS (Storage Account - StorageV2), you will need an **App Registration** with the following permissions on the Storage Account: - Storage Blob Data Contributor - Storage Queue Data Contributor ### Python Requirements {% partial file="/v1.4/connectors/python-requirements.md" /%} If running OpenMetadata version greater than 0.13, you will need to install the Datalake ingestion for GCS or S3: #### S3 installation ```bash pip3 install "openmetadata-ingestion[datalake-s3]" ``` #### GCS installation ```bash pip3 install "openmetadata-ingestion[datalake-gcp]" ``` #### Azure installation ```bash pip3 install "openmetadata-ingestion[datalake-azure]" ``` #### If version <0.13 You will be installing the requirements together for S3 and GCS ```bash pip3 install "openmetadata-ingestion[datalake]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following JSON Schema. ## 1. Define the YAML Config #### Source Configuration - Source Config using AWS S3 ### This is a sample config for Datalake using AWS S3: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} * **awsAccessKeyId**: Enter your secure access key ID for your DynamoDB connection. The specified key ID should be authorized to read all databases you want to include in the metadata ingestion workflow. * **awsSecretAccessKey**: Enter the Secret Access Key (the passcode key pair to the key ID from above). * **awsRegion**: Specify the region in which your DynamoDB is located. This setting is required even if you have configured a local AWS profile. * **schemaFilterPattern** and **tableFilterPattern**: Note that the `schemaFilterPattern` and `tableFilterPattern` both support regex as `include` or `exclude`. E.g., {% /codeInfo %} {% partial file="/v1.4/connectors/yaml/database/source-config-def.md" /%} {% partial file="/v1.4/connectors/yaml/ingestion-sink-def.md" /%} {% partial file="/v1.4/connectors/yaml/workflow-config-def.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml {% isCodeBlock=true %} source: type: datalake serviceName: local_datalake serviceConnection: config: type: Datalake ``` ```yaml {% srNumber=1 %} configSource: securityConfig: awsAccessKeyId: aws access key id awsSecretAccessKey: aws secret access key awsRegion: aws region bucketName: bucket name prefix: prefix ``` {% partial file="/v1.4/connectors/yaml/database/source-config.md" /%} {% partial file="/v1.4/connectors/yaml/ingestion-sink.md" /%} {% partial file="/v1.4/connectors/yaml/workflow-config.md" /%} {% /codeBlock %} {% /codePreview %} ### This is a sample config for Datalake using GCS: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=5 %} * **type**: Credentials type, e.g. `service_account`. * **projectId** * **privateKey** * **privateKeyId** * **clientEmail** * **clientId** * **authUri**: [https://accounts.google.com/o/oauth2/auth](https://accounts.google.com/o/oauth2/auth) by default * **tokenUri**: [https://oauth2.googleapis.com/token](https://oauth2.googleapis.com/token) by default * **authProviderX509CertUrl**: [https://www.googleapis.com/oauth2/v1/certs](https://www.googleapis.com/oauth2/v1/certs) by default * **clientX509CertUrl** * **bucketName**: name of the bucket in GCS * **Prefix**: prefix in gcp bucket {% /codeInfo %} {% partial file="/v1.4/connectors/yaml/database/source-config-def.md" /%} {% partial file="/v1.4/connectors/yaml/ingestion-sink-def.md" /%} {% partial file="/v1.4/connectors/yaml/workflow-config-def.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml {% isCodeBlock=true %} source: type: datalake serviceName: local_datalake serviceConnection: config: type: Datalake configSource: securityConfig: ``` ```yaml {% srNumber=5 %} gcpConfig: type: type of account projectId: project id privateKeyId: private key id privateKey: private key clientEmail: client email clientId: client id authUri: https://accounts.google.com/o/oauth2/auth tokenUri: https://oauth2.googleapis.com/token authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs clientX509CertUrl: clientX509 Certificate Url bucketName: bucket name prefix: prefix ``` {% partial file="/v1.4/connectors/yaml/database/source-config.md" /%} {% partial file="/v1.4/connectors/yaml/ingestion-sink.md" /%} {% partial file="/v1.4/connectors/yaml/workflow-config.md" /%} {% /codeBlock %} {% /codePreview %} ### This is a sample config for Datalake using Azure: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=9 %} - **Client ID** : Client ID of the data storage account - **Client Secret** : Client Secret of the account - **Tenant ID** : Tenant ID under which the data storage account falls - **Account Name** : Account Name of the data Storage {% /codeInfo %} {% partial file="/v1.4/connectors/yaml/database/source-config-def.md" /%} {% partial file="/v1.4/connectors/yaml/ingestion-sink-def.md" /%} {% partial file="/v1.4/connectors/yaml/workflow-config-def.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml {% isCodeBlock=true %} # Datalake with Azure source: type: datalake serviceName: local_datalake serviceConnection: config: type: Datalake configSource: ``` ```yaml {% srNumber=9 %} securityConfig: clientId: client-id clientSecret: client-secret tenantId: tenant-id accountName: account-name prefix: prefix ``` {% partial file="/v1.4/connectors/yaml/database/source-config.md" /%} {% partial file="/v1.4/connectors/yaml/ingestion-sink.md" /%} {% partial file="/v1.4/connectors/yaml/workflow-config.md" /%} {% /codeBlock %} {% /codePreview %} {% partial file="/v1.4/connectors/yaml/ingestion-cli.md" /%} ## dbt Integration You can learn more about how to ingest dbt models' definitions and their lineage [here](/connectors/ingestion/workflows/dbt).