--- title: Run the Mlflow Connector Externally slug: /connectors/ml-model/mlflow/yaml --- # Run the Mlflow Connector Externally In this section, we provide guides and references to use the Mlflow connector. Configure and schedule Mlflow metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) {% partial file="/v1.1/connectors/external-ingestion-deployment.md" /%} ## Requirements {%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%} ### Python Requirements To run the Mlflow ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[mlflow]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/mlmodel/mlflowConnection.json) you can find the structure to create a connection to Mlflow. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadatablob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config This is a sample config for Mlflow: {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=1 %} **trackingUri**: Mlflow Experiment tracking URI. E.g., http://localhost:5000 {% /codeInfo %} {% codeInfo srNumber=2 %} **registryUri**: Mlflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments {% /codeInfo %} #### Source Configuration - Source Config {% codeInfo srNumber=3 %} The sourceConfig is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/messagingServiceMetadataPipeline.json): **markDeletedMlModels**: Set the Mark Deleted Ml Models toggle to flag ml models as soft-deleted if they are not present anymore in the source system. {% /codeInfo %} #### Sink Configuration {% codeInfo srNumber=4 %} To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. {% /codeInfo %} {% partial file="/v1.1/connectors/workflow-config.md" /%} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml source: type: mlflow serviceName: local_mlflow serviceConnection: config: type: Mlflow ``` ```yaml {% srNumber=1 %} trackingUri: http://localhost:5000 ``` ```yaml {% srNumber=2 %} registryUri: mysql+pymysql://mlflow:password@localhost:3307/experiments ``` ```yaml {% srNumber=3 %} sourceConfig: config: type: MlModelMetadata # markDeletedMlModels: true ``` ```yaml {% srNumber=4 %} sink: type: metadata-rest config: {} ``` {% partial file="/v1.1/connectors/workflow-config-yaml.md" /%} {% /codeBlock %} {% /codePreview %} ### 2. Run with the CLI First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run: ```bash metadata ingest -c ``` Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.