# Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OpenMetadata MlModel mixin test """ from unittest import TestCase import pandas as pd import sklearn.datasets as datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from metadata.generated.schema.api.data.createMlModel import CreateMlModelRequest from metadata.generated.schema.entity.data.mlmodel import MlModel from metadata.generated.schema.entity.services.connections.metadata.openMetadataConnection import ( OpenMetadataConnection, ) from metadata.ingestion.ometa.ometa_api import OpenMetadata class OMetaModelMixinTest(TestCase): """ Test the MlModel integrations from MlModel Mixin """ server_config = OpenMetadataConnection(hostPort="http://localhost:8585/api") metadata = OpenMetadata(server_config) iris = datasets.load_iris() def test_get_sklearn(self): """ Check that we can ingest an SKlearn model """ df = pd.DataFrame(self.iris.data, columns=self.iris.feature_names) y = self.iris.target x_train, x_test, y_train, y_test = train_test_split( df, y, test_size=0.25, random_state=70 ) dtree = DecisionTreeClassifier() dtree.fit(x_train, y_train) entity_create: CreateMlModelRequest = self.metadata.get_mlmodel_sklearn( name="test-sklearn", model=dtree, description="Creating a test sklearn model", ) entity: MlModel = self.metadata.create_or_update(data=entity_create) self.assertEqual(entity.name, entity_create.name) self.assertEqual(entity.algorithm, "DecisionTreeClassifier") self.assertEqual( {feature.name.__root__ for feature in entity.mlFeatures}, { "sepal_length__cm_", "sepal_width__cm_", "petal_length__cm_", "petal_width__cm_", }, ) hyper_param = next( iter( param for param in entity.mlHyperParameters if param.name == "criterion" ), None, ) self.assertIsNotNone(hyper_param)