--- title: Run Atlas Connector using the CLI slug: /connectors/metadata/atlas/cli --- # Run Atlas using the metadata CLI | Feature | Status | | :----------- | :--------------------------- | | Lineage | {% icon iconName="check" /%} | | Classifications/Tags | {% icon iconName="check" /%} | | Table Descriptions | {% icon iconName="check" /%} | | Topic Descriptions | {% icon iconName="check" /%} | In this section, we provide guides and references to use the Atlas connector. Configure and schedule Atlas metadata and profiler workflows from the OpenMetadata UI: - [Requirements](#requirements) - [Metadata Ingestion](#metadata-ingestion) ## Requirements Before this, you must ingest the database / messaging service you want to get metadata for. For more details click [here](/connectors/metadata/atlas#create-database-service) {%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%} To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment. ### Python Requirements To run the Atlas ingestion, you will need to install: ```bash pip3 install "openmetadata-ingestion[atlas]" ``` ## Metadata Ingestion All connectors are defined as JSON Schemas. [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/metadata/atlasConnection.json) you can find the structure to create a connection to Atlas. In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server. The workflow is modeled around the following [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json) ### 1. Define the YAML Config {% codePreview %} {% codeInfoContainer %} #### Source Configuration - Service Connection {% codeInfo srNumber=12 %} **hostPort**: Atlas Host of the data source. {% /codeInfo %} {% codeInfo srNumber=13 %} **username**: Username to connect to the Atlas. This user should have privileges to read all the metadata in Atlas. {% /codeInfo %} {% codeInfo srNumber=14 %} **password**: Password to connect to the Atlas. {% /codeInfo %} {% codeInfo srNumber=15 %} **databaseServiceName**: source database of the data source(Database service that you created from UI. example- local_hive). {% /codeInfo %} {% codeInfo srNumber=16 %} **messagingServiceName**: messaging service source of the data source. {% /codeInfo %} {% codeInfo srNumber=17 %} **entity_type**: Name of the entity type in Atlas. {% /codeInfo %} #### Sink Configuration {% codeInfo srNumber=18 %} To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`. {% /codeInfo %} #### Workflow Configuration {% codeInfo srNumber=19 %} The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation. For a simple, local installation using our docker containers, this looks like: {% /codeInfo %} {% /codeInfoContainer %} {% codeBlock fileName="filename.yaml" %} ```yaml source: type: Atlas serviceName: local_atlas serviceConnection: config: type: Atlas ``` ```yaml {% srNumber=12 %} hostPort: http://localhost:10000 ``` ```yaml {% srNumber=13 %} username: username ``` ```yaml {% srNumber=14 %} password: password ``` ```yaml {% srNumber=15 %} databaseServiceName: ["local_hive"] # create database service and messaging service and pass `service name` here ``` ```yaml {% srNumber=16 %} messagingServiceName: [] ``` ```yaml {% srNumber=17 %} entity_type: Table sourceConfig: config: type: DatabaseMetadata ``` ```yaml {% srNumber=18 %} sink: type: metadata-rest config: {} ``` ```yaml {% srNumber=19 %} workflowConfig: openMetadataServerConfig: hostPort: "http://localhost:8585/api" authProvider: openmetadata securityConfig: jwtToken: "{bot_jwt_token}" ``` {% /codeBlock %} {% /codePreview %} ### Workflow Configs for Security Provider We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client). ## Openmetadata JWT Auth - JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details [here](/deployment/security/enable-jwt-tokens). ```yaml workflowConfig: openMetadataServerConfig: hostPort: "http://localhost:8585/api" authProvider: openmetadata securityConfig: jwtToken: "{bot_jwt_token}" ``` - You can refer to the JWT Troubleshooting section [link](/deployment/security/jwt-troubleshooting) for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc [link](/deployment/security/workflow-config-auth). ### 2. Run with the CLI First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run: ```bash metadata ingest -c ``` Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.