---
title: Run Mlflow Connector using the CLI
slug: /connectors/ml-model/mlflow/cli
---
# Run Mlflow using the metadata CLI
In this section, we provide guides and references to use the Mlflow connector.
Configure and schedule Mlflow metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
To deploy OpenMetadata, check the Deployment guides.
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Mlflow ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[mlflow]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/mlmodel/mlflowConnection.json)
you can find the structure to create a connection to Mlflow.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadatablob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Mlflow:
```yaml
source:
  type: mlflow
  serviceName: local_mlflow
  serviceConnection:
    config:
      type: Mlflow
      trackingUri: http://localhost:5000
      registryUri: mysql+pymysql://mlflow:password@localhost:3307/experiments
  sourceConfig:
    config:
      type: MlModelMetadata
      # markDeletedMlModels: true
sink:
  type: metadata-rest
  config: {}
workflowConfig:
  # loggerLevel: DEBUG  # DEBUG, INFO, WARN or ERROR
  openMetadataServerConfig:
    hostPort: 
    authProvider: 
```
#### Source Configuration - Service Connection
- **trackingUri**: Mlflow Experiment tracking URI. E.g., http://localhost:5000
- **registryUri**: Mlflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments
#### Source Configuration - Source Config
- `markDeletedMlModels`: Set the Mark Deleted Ml Models toggle to flag ml models as soft-deleted if they are not present anymore in the source system.
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: openmetadata
    securityConfig:
      jwtToken: '{bot_jwt_token}'
```
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
You can find the different implementation of the ingestion below.
### Openmetadata JWT Auth
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: openmetadata
    securityConfig:
      jwtToken: '{bot_jwt_token}'
```
### Auth0 SSO
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: auth0
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: azure
    securityConfig:
      clientSecret: '{your_client_secret}'
      authority: '{your_authority_url}'
      clientId: '{your_client_id}'
      scopes:
        - your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: google
    securityConfig:
      secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: http://localhost:8585/api
    authProvider: okta
    securityConfig:
      clientId: "{CLIENT_ID - SPA APP}"
      orgURL: "{ISSUER_URL}/v1/token"
      privateKey: "{public/private keypair}"
      email: "{email}"
      scopes:
        - token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: auth0
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
```
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c 
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.