# generated by datamodel-codegen: # filename: schema/api/data/createMLModel.json # timestamp: 2021-11-18T23:20:04+00:00 from __future__ import annotations from typing import List, Optional from pydantic import BaseModel, Field, constr from ...entity.data import mlmodel from ...type import entityReference, tagLabel class CreateMlModelEntityRequest(BaseModel): name: constr(min_length=1, max_length=64) = Field( ..., description='Name that identifies this ML model.' ) displayName: Optional[str] = Field( None, description='Display Name that identifies this ML model. It could be title or label from the source services', ) description: Optional[str] = Field( None, description='Description of the ML model instance. How it was trained and for what it is used.', ) algorithm: str = Field(..., description='Algorithm used to train the ML model') mlFeatures: Optional[List[mlmodel.MlFeature]] = Field( None, description='Features used to train the ML Model.' ) mlHyperParameters: Optional[List[mlmodel.MlHyperParameter]] = Field( None, description='Hyper Parameters used to train the ML Model.' ) dashboard: Optional[entityReference.EntityReference] = Field( None, description='Performance Dashboard URL to track metric evolution' ) tags: Optional[List[tagLabel.TagLabel]] = Field( None, description='Tags for this ML Model' ) owner: Optional[entityReference.EntityReference] = Field( None, description='Owner of this database' )