--- title: Python SDK for Lineage slug: /sdk/python/ingestion/lineage --- # Python SDK for Lineage In this guide, we will use the Python SDK to create and fetch Lineage information. For simplicity, we are going to create lineage between Tables. However, this would work with ANY entity. Note that in OpenMetadata, the Lineage information is just a possible relationship between Entities. Other types of relationships for example could be: - Contains (a Database contains Schemas, which at the same time contain Tables), - or Ownership of any asset. The point being, any Entity existent in OpenMetadata can be related to any other via Lineage. In the following sections we will: - Create a Database Service, a Database, a Schema and two Tables, - Add Lineage between both Tables, - Get the Lineage information back. A **prerequisite** for this section is to have previously gone through the following [docs](/sdk/python). ## Creating the Entities To prepare the necessary ingredients, execute the following steps. All functions that we are going to use related to Lineage can be found in [here](https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/src/metadata/ingestion/ometa/mixins/lineage_mixin.py) ### 1. Preparing the Client ```python from metadata.generated.schema.entity.services.connections.metadata.openMetadataConnection import ( OpenMetadataConnection, ) from metadata.ingestion.ometa.ometa_api import OpenMetadata server_config = OpenMetadataConnection(hostPort="http://localhost:8585/api") metadata = OpenMetadata(server_config) assert metadata.health_check() # Will fail if we cannot reach the server ``` ### 2. Creating the Database Service We are mocking a MySQL instance. Note how we need to pass the right configuration class `MysqlConnection`, as a parameter for the generic `DatabaseConnection` type. ```python from metadata.generated.schema.api.services.createDatabaseService import ( CreateDatabaseServiceRequest, ) from metadata.generated.schema.entity.services.connections.database.mysqlConnection import ( MysqlConnection, ) from metadata.generated.schema.entity.services.databaseService import ( DatabaseConnection, DatabaseService, DatabaseServiceType, ) db_service = CreateDatabaseServiceRequest( name="test-service-db-lineage", serviceType=DatabaseServiceType.Mysql, connection=DatabaseConnection( config=MysqlConnection( username="username", password="password", hostPort="http://localhost:1234", ) ), ) db_service_entity = metadata.create_or_update(data=db_service) ``` ### 3. Creating the Database Any Entity that is created and linked to another Entity, has to hold the `EntityReference` to the Entity it relates to. In this case, a Database is bound to a specific service. ```python from metadata.generated.schema.api.data.createDatabase import CreateDatabaseRequest from metadata.generated.schema.type.entityReference import EntityReference create_db = CreateDatabaseRequest( name="test-db", service=EntityReference( id=db_service_entity.id, type="databaseService" ), ) create_db_entity = metadata.create_or_update(data=create_db) ``` ### 4. Creating the Schema The same happens with the Schemas. They are related to a Database. ```python from metadata.generated.schema.api.data.createDatabaseSchema import ( CreateDatabaseSchemaRequest, ) create_schema = CreateDatabaseSchemaRequest( name="test-schema", database=EntityReference( id=create_db_entity.id, name="test-db", type="database" ) ) create_schema_entity = metadata.create_or_update(data=create_schema) ``` ### 5. Creating the Tables And finally, Tables are contained in a specific Schema, so we use the `EntityReference` here as well. We are doing a simple example with a single column. ```python from metadata.generated.schema.api.data.createTable import CreateTableRequest from metadata.generated.schema.entity.data.table import Column, DataType table_a = CreateTableRequest( name="tableA", databaseSchema=EntityReference( id=create_schema_entity.id, name="test-schema", type="databaseSchema" ), columns=[Column(name="id", dataType=DataType.BIGINT)], ) table_b = CreateTableRequest( name="tableB", databaseSchema=EntityReference( id=create_schema_entity.id, name="test-schema", type="databaseSchema" ), columns=[Column(name="id", dataType=DataType.BIGINT)], ) table_a_entity = metadata.create_or_update(data=table_a) table_b_entity = metadata.create_or_update(data=table_b) ``` ### 6. Adding Lineage With everything prepared, we can now create the Lineage between both Entities. An `AddLineageRequest` type represents the edge between two Entities, typed under `EntitiesEdge`. ```python from metadata.generated.schema.api.lineage.addLineage import AddLineageRequest from metadata.generated.schema.type.entityLineage import EntitiesEdge add_lineage_request = AddLineageRequest( description="test lineage", edge=EntitiesEdge( fromEntity=EntityReference(id=table_a_entity.id, type="table"), toEntity=EntityReference(id=table_b_entity.id, type="table"), ), ) created_lineage = metadata.add_lineage(data=add_lineage_request) ``` The Python client will already return us a JSON object with the Lineage information about the `fromEntity` node we added: ```json { "entity": { "id": "e7bee99b-5c5e-43ec-805c-8beba04804f5", "type": "table", "name": "tableA", "fullyQualifiedName": "test-service-db-lineage.test-db.test-schema.tableA", "deleted": false, "href": "http://localhost:8585/api/v1/tables/e7bee99b-5c5e-43ec-805c-8beba04804f5" }, "nodes": [ { "id": "800caa0f-a149-48d2-a0ce-6ca84501767e", "type": "table", "name": "tableB", "fullyQualifiedName": "test-service-db-lineage.test-db.test-schema.tableB", "deleted": false, "href": "http://localhost:8585/api/v1/tables/800caa0f-a149-48d2-a0ce-6ca84501767e" } ], "upstreamEdges": [], "downstreamEdges": [ { "fromEntity": "e7bee99b-5c5e-43ec-805c-8beba04804f5", "toEntity": "800caa0f-a149-48d2-a0ce-6ca84501767e" } ] } ``` If the node were to have other edges already, they would be showing up here. ### 7. Fetching Lineage Finally, let's fetch the lineage from the other node involved: ```python from metadata.generated.schema.entity.data.table import Table metadata.get_lineage_by_name( entity=Table, fqn="test-service-db-lineage.test-db.test-schema.tableB", # Tune this to control how far in the lineage graph to go up_depth=1, down_depth=1 ) ``` Which will give us the symmetric results from above ```json { "entity": { "id": "800caa0f-a149-48d2-a0ce-6ca84501767e", "type": "table", "name": "tableB", "fullyQualifiedName": "test-service-db-lineage.test-db.test-schema.tableB", "deleted": false, "href": "http://localhost:8585/api/v1/tables/800caa0f-a149-48d2-a0ce-6ca84501767e" }, "nodes": [ { "id": "e7bee99b-5c5e-43ec-805c-8beba04804f5", "type": "table", "name": "tableA", "fullyQualifiedName": "test-service-db-lineage.test-db.test-schema.tableA", "deleted": false, "href": "http://localhost:8585/api/v1/tables/e7bee99b-5c5e-43ec-805c-8beba04804f5" } ], "upstreamEdges": [ { "fromEntity": "e7bee99b-5c5e-43ec-805c-8beba04804f5", "toEntity": "800caa0f-a149-48d2-a0ce-6ca84501767e" } ], "downstreamEdges": [] } ``` You can also get lineage by ID using the `get_lineage_by_id` method, which accepts `entity_id` instead of `fqn`.