mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-13 20:18:24 +00:00

* MINOR - Update Auto Classification defaults for sample data & classification * fix tests
377 lines
14 KiB
Python
377 lines
14 KiB
Python
# Copyright 2024 Collate
|
|
# Licensed under the Collate Community License, Version 1.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/LICENSE
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Test the NoSQL profiler using a MongoDB container
|
|
To run this we need OpenMetadata server up and running.
|
|
No sample data is required beforehand
|
|
|
|
Test Steps:
|
|
|
|
1. Start a MongoDB container
|
|
2. Ingest data into OpenMetadata
|
|
3. Run the profiler workflow
|
|
4. Verify the profiler output
|
|
5. Tear down the MongoDB container and delete the service from OpenMetadata
|
|
"""
|
|
|
|
from copy import deepcopy
|
|
from datetime import datetime, timedelta
|
|
from functools import partial
|
|
from pathlib import Path
|
|
from random import choice, randint
|
|
from unittest import TestCase
|
|
|
|
from pymongo import MongoClient, database
|
|
from testcontainers.mongodb import MongoDbContainer
|
|
|
|
from _openmetadata_testutils.ometa import int_admin_ometa
|
|
from metadata.generated.schema.entity.data.table import ColumnProfile, Table
|
|
from metadata.generated.schema.entity.services.databaseService import DatabaseService
|
|
from metadata.generated.schema.type.basic import Timestamp
|
|
from metadata.ingestion.ometa.ometa_api import OpenMetadata
|
|
from metadata.profiler.api.models import TableConfig
|
|
from metadata.utils.constants import SAMPLE_DATA_DEFAULT_COUNT
|
|
from metadata.utils.helpers import datetime_to_ts
|
|
from metadata.utils.test_utils import accumulate_errors
|
|
from metadata.utils.time_utils import get_end_of_day_timestamp_mill
|
|
from metadata.workflow.classification import AutoClassificationWorkflow
|
|
from metadata.workflow.metadata import MetadataWorkflow
|
|
from metadata.workflow.profiler import ProfilerWorkflow
|
|
from metadata.workflow.workflow_output_handler import WorkflowResultStatus
|
|
|
|
SERVICE_NAME = Path(__file__).stem
|
|
|
|
|
|
def add_query_config(config, table_config: TableConfig) -> dict:
|
|
config_copy = deepcopy(config)
|
|
config_copy["processor"]["config"].setdefault("tableConfig", [])
|
|
config_copy["processor"]["config"]["tableConfig"].append(table_config)
|
|
return config_copy
|
|
|
|
|
|
def get_ingestion_config(mongo_port: str, mongo_user: str, mongo_pass: str):
|
|
return {
|
|
"source": {
|
|
"type": "mongodb",
|
|
"serviceName": SERVICE_NAME,
|
|
"serviceConnection": {
|
|
"config": {
|
|
"type": "MongoDB",
|
|
"hostPort": f"localhost:{mongo_port}",
|
|
"username": mongo_user,
|
|
"password": mongo_pass,
|
|
}
|
|
},
|
|
"sourceConfig": {"config": {"type": "DatabaseMetadata"}},
|
|
},
|
|
"sink": {"type": "metadata-rest", "config": {}},
|
|
"workflowConfig": {
|
|
"loggerLevel": "DEBUG",
|
|
"openMetadataServerConfig": {
|
|
"hostPort": "http://localhost:8585/api",
|
|
"authProvider": "openmetadata",
|
|
"securityConfig": {
|
|
"jwtToken": "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXBiEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fNr3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3ud-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
TEST_DATABASE = "test-database"
|
|
EMPTY_COLLECTION = "empty-collection"
|
|
TEST_COLLECTION = "test-collection"
|
|
NUM_ROWS = 200
|
|
|
|
|
|
def random_row():
|
|
return {
|
|
"name": choice(["John", "Jane", "Alice", "Bob"]),
|
|
"age": randint(20, 60),
|
|
"city": choice(["New York", "Chicago", "San Francisco"]),
|
|
"nested": {"key": "value" + str(randint(1, 10))},
|
|
}
|
|
|
|
|
|
TEST_DATA = [random_row() for _ in range(NUM_ROWS)] + [
|
|
{
|
|
"name": "John",
|
|
"age": 60,
|
|
"city": "New York",
|
|
},
|
|
{
|
|
"name": "Jane",
|
|
"age": 20,
|
|
"city": "New York",
|
|
},
|
|
]
|
|
|
|
|
|
class NoSQLProfiler(TestCase):
|
|
"""datalake profiler E2E test"""
|
|
|
|
mongo_container: MongoDbContainer
|
|
client: MongoClient
|
|
db: database.Database
|
|
collection: database.Collection
|
|
ingestion_config: dict
|
|
metadata: OpenMetadata
|
|
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
cls.metadata = int_admin_ometa()
|
|
cls.mongo_container = MongoDbContainer("mongo:7.0.5-jammy")
|
|
cls.mongo_container.start()
|
|
cls.client = MongoClient(cls.mongo_container.get_connection_url())
|
|
cls.db = cls.client[TEST_DATABASE]
|
|
cls.collection = cls.db[TEST_COLLECTION]
|
|
cls.collection.insert_many(TEST_DATA)
|
|
cls.db.create_collection(EMPTY_COLLECTION)
|
|
cls.ingestion_config = get_ingestion_config(
|
|
cls.mongo_container.get_exposed_port("27017"), "test", "test"
|
|
)
|
|
# cls.client["admin"].command("grantRolesToUser", "test", roles=["userAdminAnyDatabase"])
|
|
ingestion_workflow = MetadataWorkflow.create(
|
|
cls.ingestion_config,
|
|
)
|
|
ingestion_workflow.execute()
|
|
ingestion_workflow.raise_from_status()
|
|
ingestion_workflow.print_status()
|
|
ingestion_workflow.stop()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
with accumulate_errors() as error_handler:
|
|
error_handler.try_execute(partial(cls.mongo_container.stop, force=True))
|
|
error_handler.try_execute(cls.delete_service)
|
|
|
|
@classmethod
|
|
def delete_service(cls):
|
|
service_id = str(
|
|
cls.metadata.get_by_name(entity=DatabaseService, fqn=SERVICE_NAME).id.root
|
|
)
|
|
cls.metadata.delete(
|
|
entity=DatabaseService,
|
|
entity_id=service_id,
|
|
recursive=True,
|
|
hard_delete=True,
|
|
)
|
|
|
|
def test_setup_teardown(self):
|
|
"""
|
|
does nothing. useful to check if the setup and teardown methods are working
|
|
"""
|
|
pass
|
|
|
|
def run_profiler_workflow(self, config):
|
|
profiler_workflow = ProfilerWorkflow.create(config)
|
|
profiler_workflow.execute()
|
|
status = profiler_workflow.result_status()
|
|
profiler_workflow.stop()
|
|
assert status == WorkflowResultStatus.SUCCESS
|
|
|
|
def run_auto_classification_workflow(self, config):
|
|
auto_classification_workflow = AutoClassificationWorkflow.create(config)
|
|
auto_classification_workflow.execute()
|
|
status = auto_classification_workflow.result_status()
|
|
auto_classification_workflow.stop()
|
|
assert status == WorkflowResultStatus.SUCCESS
|
|
|
|
def test_simple(self):
|
|
workflow_config = deepcopy(self.ingestion_config)
|
|
workflow_config["source"]["sourceConfig"]["config"].update(
|
|
{
|
|
"type": "Profiler",
|
|
}
|
|
)
|
|
workflow_config["processor"] = {
|
|
"type": "orm-profiler",
|
|
"config": {},
|
|
}
|
|
self.run_profiler_workflow(workflow_config)
|
|
|
|
cases = [
|
|
{
|
|
"collection": EMPTY_COLLECTION,
|
|
"expected": {
|
|
"rowCount": 0,
|
|
"columns": [],
|
|
},
|
|
},
|
|
{
|
|
"collection": TEST_COLLECTION,
|
|
"expected": {
|
|
"rowCount": len(TEST_DATA),
|
|
"columns": [
|
|
ColumnProfile(
|
|
name="age",
|
|
timestamp=Timestamp(int(datetime.now().timestamp())),
|
|
max=60,
|
|
min=20,
|
|
),
|
|
],
|
|
},
|
|
},
|
|
]
|
|
|
|
for tc in cases:
|
|
collection = tc["collection"]
|
|
expected = tc["expected"]
|
|
collection_profile = self.metadata.get_profile_data(
|
|
f"{SERVICE_NAME}.default.{TEST_DATABASE}.{collection}",
|
|
datetime_to_ts(datetime.now() - timedelta(seconds=10)),
|
|
get_end_of_day_timestamp_mill(),
|
|
)
|
|
assert collection_profile.entities
|
|
assert collection_profile.entities[-1].rowCount == expected["rowCount"]
|
|
column_profile = self.metadata.get_profile_data(
|
|
f"{SERVICE_NAME}.default.{TEST_DATABASE}.{collection}.age",
|
|
datetime_to_ts(datetime.now() - timedelta(seconds=10)),
|
|
get_end_of_day_timestamp_mill(),
|
|
profile_type=ColumnProfile,
|
|
)
|
|
assert (len(column_profile.entities) > 0) == (
|
|
len(tc["expected"]["columns"]) > 0
|
|
)
|
|
if len(expected["columns"]) > 0:
|
|
for c1, c2 in zip(column_profile.entities, expected["columns"]):
|
|
assert c1.name == c2.name
|
|
assert c1.max == c2.max
|
|
assert c1.min == c2.min
|
|
|
|
auto_workflow_config = deepcopy(self.ingestion_config)
|
|
auto_workflow_config["source"]["sourceConfig"]["config"].update(
|
|
{
|
|
"type": "AutoClassification",
|
|
"storeSampleData": True,
|
|
"enableAutoClassification": False,
|
|
}
|
|
)
|
|
auto_workflow_config["processor"] = {
|
|
"type": "orm-profiler",
|
|
"config": {},
|
|
}
|
|
self.run_auto_classification_workflow(auto_workflow_config)
|
|
|
|
table = self.metadata.get_by_name(
|
|
Table, f"{SERVICE_NAME}.default.{TEST_DATABASE}.{TEST_COLLECTION}"
|
|
)
|
|
sample_data = self.metadata.get_sample_data(table)
|
|
assert [c.root for c in sample_data.sampleData.columns] == [
|
|
"_id",
|
|
"name",
|
|
"age",
|
|
"city",
|
|
"nested",
|
|
]
|
|
assert len(sample_data.sampleData.rows) == SAMPLE_DATA_DEFAULT_COUNT
|
|
|
|
def test_custom_query(self):
|
|
workflow_config = deepcopy(self.ingestion_config)
|
|
workflow_config["source"]["sourceConfig"]["config"].update(
|
|
{
|
|
"type": "Profiler",
|
|
}
|
|
)
|
|
query_age = TEST_DATA[0]["age"]
|
|
workflow_config["processor"] = {
|
|
"type": "orm-profiler",
|
|
"config": {
|
|
"tableConfig": [
|
|
{
|
|
"fullyQualifiedName": f"{SERVICE_NAME}.default.{TEST_DATABASE}.{TEST_COLLECTION}",
|
|
"profileQuery": '{"age": %s}' % query_age,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
self.run_profiler_workflow(workflow_config)
|
|
|
|
cases = [
|
|
{
|
|
"collection": EMPTY_COLLECTION,
|
|
"expected": {
|
|
"rowCount": 0,
|
|
"columns": [],
|
|
},
|
|
},
|
|
{
|
|
"collection": TEST_COLLECTION,
|
|
"expected": {
|
|
"rowCount": len(TEST_DATA),
|
|
"columns": [
|
|
ColumnProfile(
|
|
name="age",
|
|
timestamp=Timestamp(int(datetime.now().timestamp())),
|
|
max=query_age,
|
|
min=query_age,
|
|
),
|
|
],
|
|
},
|
|
},
|
|
]
|
|
|
|
for tc in cases:
|
|
collection = tc["collection"]
|
|
expected_row_count = tc["expected"]["rowCount"]
|
|
|
|
collection_profile = self.metadata.get_profile_data(
|
|
f"{SERVICE_NAME}.default.{TEST_DATABASE}.{collection}",
|
|
datetime_to_ts(datetime.now() - timedelta(seconds=10)),
|
|
get_end_of_day_timestamp_mill(),
|
|
)
|
|
assert collection_profile.entities, collection
|
|
assert (
|
|
collection_profile.entities[-1].rowCount == expected_row_count
|
|
), collection
|
|
column_profile = self.metadata.get_profile_data(
|
|
f"{SERVICE_NAME}.default.{TEST_DATABASE}.{collection}.age",
|
|
datetime_to_ts(datetime.now() - timedelta(seconds=10)),
|
|
get_end_of_day_timestamp_mill(),
|
|
profile_type=ColumnProfile,
|
|
)
|
|
assert (len(column_profile.entities) > 0) == (
|
|
len(tc["expected"]["columns"]) > 0
|
|
)
|
|
|
|
auto_workflow_config = deepcopy(self.ingestion_config)
|
|
auto_workflow_config["source"]["sourceConfig"]["config"].update(
|
|
{
|
|
"type": "AutoClassification",
|
|
"storeSampleData": True,
|
|
"enableAutoClassification": False,
|
|
}
|
|
)
|
|
auto_workflow_config["processor"] = {
|
|
"type": "orm-profiler",
|
|
"config": {
|
|
"tableConfig": [
|
|
{
|
|
"fullyQualifiedName": f"{SERVICE_NAME}.default.{TEST_DATABASE}.{TEST_COLLECTION}",
|
|
"profileQuery": '{"age": %s}' % query_age,
|
|
}
|
|
],
|
|
},
|
|
}
|
|
self.run_auto_classification_workflow(auto_workflow_config)
|
|
|
|
table = self.metadata.get_by_name(
|
|
Table, f"{SERVICE_NAME}.default.{TEST_DATABASE}.{TEST_COLLECTION}"
|
|
)
|
|
sample_data = self.metadata.get_sample_data(table)
|
|
age_column_index = [col.root for col in sample_data.sampleData.columns].index(
|
|
"age"
|
|
)
|
|
assert all(
|
|
[r[age_column_index] == str(query_age) for r in sample_data.sampleData.rows]
|
|
)
|