mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-09 01:58:53 +00:00
150 lines
5.0 KiB
Python
150 lines
5.0 KiB
Python
# Copyright 2025 Collate
|
|
# Licensed under the Collate Community License, Version 1.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/LICENSE
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Test Sagemaker.
|
|
"""
|
|
|
|
from unittest import TestCase
|
|
from unittest.mock import patch
|
|
|
|
from metadata.generated.schema.api.data.createMlModel import CreateMlModelRequest
|
|
from metadata.generated.schema.entity.data.mlmodel import MlStore
|
|
from metadata.ingestion.api.models import Either
|
|
from metadata.ingestion.api.parser import parse_workflow_config_gracefully
|
|
from metadata.ingestion.source.mlmodel.sagemaker.metadata import SagemakerSource
|
|
|
|
ML_MODEL_SERVICE_MOCK = "unittest_sagemaker"
|
|
|
|
MODELS_MOCK = [
|
|
{
|
|
"ModelName": "model_1",
|
|
"ModelArn": "arn::model_1",
|
|
"CreationTime": "2020-01-01 00:00:00",
|
|
},
|
|
{
|
|
"ModelName": "model_2",
|
|
"ModelArn": "arn::model_2",
|
|
"CreationTime": "2020-01-01 00:00:00",
|
|
},
|
|
{
|
|
"ModelName": "model_3",
|
|
"ModelArn": "arn::model_3",
|
|
"CreationTime": "2020-01-01 00:00:00",
|
|
},
|
|
]
|
|
|
|
MODEL_DESCRIPTIONS_MOCK = {
|
|
"model_1": {
|
|
"PrimaryContainer": {
|
|
"Image": "image_1",
|
|
"ModelDataUrl": "file://storage_1",
|
|
}
|
|
},
|
|
"model_2": {
|
|
"PrimaryContainer": {
|
|
"ModelDataUrl": "file://storage_2",
|
|
}
|
|
},
|
|
"model_3": {},
|
|
}
|
|
|
|
EXPECTED_MODELS = [
|
|
CreateMlModelRequest(
|
|
name="model_1",
|
|
algorithm="mlmodel",
|
|
mlStore=MlStore(storage="file://storage_1", imageRepository="image_1"),
|
|
service=ML_MODEL_SERVICE_MOCK,
|
|
),
|
|
CreateMlModelRequest(
|
|
name="model_2",
|
|
algorithm="mlmodel",
|
|
mlStore=MlStore(storage="file://storage_2"),
|
|
service=ML_MODEL_SERVICE_MOCK,
|
|
),
|
|
CreateMlModelRequest(
|
|
name="model_3", algorithm="mlmodel", mlStore=None, service=ML_MODEL_SERVICE_MOCK
|
|
),
|
|
]
|
|
|
|
|
|
class SagemakerClientMock:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def list_models(self, *args, **kwargs):
|
|
return {"Models": MODELS_MOCK, "NextToken": None}
|
|
|
|
def describe_model(self, modelName: str, *args, **kwargs):
|
|
return MODEL_DESCRIPTIONS_MOCK.get(modelName)
|
|
|
|
|
|
sagemaker_config = {
|
|
"source": {
|
|
"type": "sagemaker",
|
|
"serviceName": ML_MODEL_SERVICE_MOCK,
|
|
"serviceConnection": {
|
|
"config": {
|
|
"type": "SageMaker",
|
|
"awsConfig": {
|
|
"awsAccessKeyId": "access_key",
|
|
"awsSecretAccessKey": "secret_access_key",
|
|
"awsSessionToken": "session_token",
|
|
"awsRegion": "region",
|
|
},
|
|
}
|
|
},
|
|
"sourceConfig": {
|
|
"config": {
|
|
"type": "MlModelMetadata",
|
|
}
|
|
},
|
|
},
|
|
"sink": {
|
|
"type": "metadata-rest",
|
|
"config": {},
|
|
},
|
|
"workflowConfig": {
|
|
"openMetadataServerConfig": {
|
|
"hostPort": "http://localhost:8585/api",
|
|
"authProvider": "openmetadata",
|
|
"securityConfig": {
|
|
"jwtToken": "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXBiEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fNr3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3ud-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
|
|
},
|
|
}
|
|
},
|
|
}
|
|
|
|
|
|
class SagemakerTest(TestCase):
|
|
@patch(
|
|
"metadata.ingestion.source.mlmodel.sagemaker.metadata.SagemakerSource.test_connection"
|
|
)
|
|
def __init__(self, methodName, test_connection) -> None:
|
|
super().__init__(methodName)
|
|
test_connection.return_value = False
|
|
self.config = parse_workflow_config_gracefully(sagemaker_config)
|
|
self.sagemaker_source = SagemakerSource.create(
|
|
sagemaker_config["source"],
|
|
self.config.workflowConfig.openMetadataServerConfig,
|
|
)
|
|
|
|
self.sagemaker_source.sagemaker = SagemakerClientMock()
|
|
|
|
self.sagemaker_source.context.get().__dict__[
|
|
"mlmodel_service"
|
|
] = ML_MODEL_SERVICE_MOCK
|
|
|
|
def test_ccreate_ml_model_request_is_correct(self):
|
|
for i, mlmodel in enumerate(self.sagemaker_source.get_mlmodels()):
|
|
assert self.sagemaker_source.yield_mlmodel(mlmodel) == Either(
|
|
right=EXPECTED_MODELS[i]
|
|
)
|