454 lines
16 KiB
Python

# Copyright 2025 Collate
# Licensed under the Collate Community License, Version 1.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/LICENSE
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test datalake utils
"""
import os
from unittest import TestCase
import pandas as pd
from metadata.generated.schema.entity.data.table import Column, DataType
from metadata.readers.dataframe.reader_factory import SupportedTypes
from metadata.utils.datalake.datalake_utils import (
DataFrameColumnParser,
GenericDataFrameColumnParser,
ParquetDataFrameColumnParser,
)
STRUCTURE = {
"a": "w",
"b": 4,
"c": {
"d": 2,
"e": 4,
"f": {
"g": 9,
"h": {"i": 6},
"n": {
"o": 10,
"p": 11,
},
},
"j": 7,
"k": 8,
},
}
class TestDatalakeUtils(TestCase):
"""class for datalake utils test"""
def test_unique_json_structure(self):
"""test unique json structure fn"""
sample_data = [
{"a": "x", "b": 1, "c": {"d": 2}},
{"a": "y", "b": 2, "c": {"e": 4, "f": {"g": 5, "h": {"i": 6}, "n": 5}}},
{"a": "z", "b": 3, "c": {"j": 7}},
{"a": "w", "b": 4, "c": {"k": 8, "f": {"g": 9, "n": {"o": 10, "p": 11}}}},
]
expected = STRUCTURE
actual = GenericDataFrameColumnParser.unique_json_structure(sample_data)
self.assertDictEqual(expected, actual)
def test_construct_column(self):
"""test construct column fn"""
expected = [
{
"dataTypeDisplay": "STRING",
"dataType": "STRING",
"name": "a",
"displayName": "a",
},
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "b",
"displayName": "b",
},
{
"dataTypeDisplay": "JSON",
"dataType": "JSON",
"name": "c",
"displayName": "c",
"children": [
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "d",
"displayName": "d",
},
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "e",
"displayName": "e",
},
{
"dataTypeDisplay": "JSON",
"dataType": "JSON",
"name": "f",
"displayName": "f",
"children": [
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "g",
"displayName": "g",
},
{
"dataTypeDisplay": "JSON",
"dataType": "JSON",
"name": "h",
"displayName": "h",
"children": [
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "i",
"displayName": "i",
}
],
},
{
"dataTypeDisplay": "JSON",
"dataType": "JSON",
"name": "n",
"displayName": "n",
"children": [
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "o",
"displayName": "o",
},
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "p",
"displayName": "p",
},
],
},
],
},
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "j",
"displayName": "j",
},
{
"dataTypeDisplay": "INT",
"dataType": "INT",
"name": "k",
"displayName": "k",
},
],
},
]
actual = GenericDataFrameColumnParser.construct_json_column_children(STRUCTURE)
for el in zip(expected, actual):
self.assertDictEqual(el[0], el[1])
def test_create_column_object(self):
"""test create column object fn"""
formatted_column = GenericDataFrameColumnParser.construct_json_column_children(
STRUCTURE
)
column = {
"dataTypeDisplay": "STRING",
"dataType": "STRING",
"name": "a",
"displayName": "a",
"children": formatted_column,
}
column_obj = Column(**column)
assert len(column_obj.children) == 3
class TestParquetDataFrameColumnParser(TestCase):
"""Test parquet dataframe column parser"""
@classmethod
def setUpClass(cls) -> None:
resources_path = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "resources"
)
cls.parquet_path = os.path.join(resources_path, "datalake", "example.parquet")
cls.df = pd.read_parquet(cls.parquet_path)
cls.parquet_parser = ParquetDataFrameColumnParser(cls.df)
def test_parser_instantiation(self):
"""Test the right parser is instantiated from the creator method"""
parquet_parser = DataFrameColumnParser.create(self.df, SupportedTypes.PARQUET)
self.assertIsInstance(parquet_parser.parser, ParquetDataFrameColumnParser)
parquet_types = [
SupportedTypes.PARQUET,
SupportedTypes.PARQUET_PQ,
SupportedTypes.PARQUET_PQT,
SupportedTypes.PARQUET_PARQ,
SupportedTypes.PARQUET_SNAPPY,
]
other_types = [typ for typ in SupportedTypes if typ not in parquet_types]
for other_type in other_types:
with self.subTest(other_type=other_type):
generic_parser = DataFrameColumnParser.create(self.df, other_type)
self.assertIsInstance(
generic_parser.parser, GenericDataFrameColumnParser
)
def test_shuffle_and_sample_from_parser(self):
"""test the shuffle and sampling logic from the parser creator method"""
parquet_parser = DataFrameColumnParser.create(self.df, SupportedTypes.PARQUET)
self.assertEqual(parquet_parser.parser.data_frame.shape, self.df.shape)
parquet_parser = DataFrameColumnParser.create(
[self.df, self.df], SupportedTypes.PARQUET
)
self.assertEqual(parquet_parser.parser.data_frame.shape, self.df.shape)
parquet_parser = DataFrameColumnParser.create(
[self.df, self.df], SupportedTypes.PARQUET, sample=False
)
self.assertEqual(
parquet_parser.parser.data_frame.shape, pd.concat([self.df, self.df]).shape
)
def test_get_columns(self):
"""test `get_columns` method of the parquet column parser"""
expected = [
Column(
dataTypeDisplay="bool",
dataType=DataType.BOOLEAN,
name="a",
displayName="a",
), # type: ignore
Column(
dataTypeDisplay="int8",
dataType=DataType.INT,
name="b",
displayName="b",
), # type: ignore
Column(
dataTypeDisplay="int16",
dataType=DataType.INT,
name="c",
displayName="c",
), # type: ignore
Column(
dataTypeDisplay="int32",
dataType=DataType.INT,
name="d",
displayName="d",
), # type: ignore
Column(
dataTypeDisplay="int64",
dataType=DataType.INT,
name="e",
displayName="e",
), # type: ignore
Column(
dataTypeDisplay="uint8",
dataType=DataType.UINT,
name="f",
displayName="f",
), # type: ignore
Column(
dataTypeDisplay="uint16",
dataType=DataType.UINT,
name="g",
displayName="g",
), # type: ignore
Column(
dataTypeDisplay="uint32",
dataType=DataType.UINT,
name="h",
displayName="h",
), # type: ignore
Column(
dataTypeDisplay="uint64",
dataType=DataType.UINT,
name="i",
displayName="i",
), # type: ignore
Column(
dataTypeDisplay="float",
dataType=DataType.FLOAT,
name="k",
displayName="k",
), # type: ignore
Column(
dataTypeDisplay="double",
dataType=DataType.FLOAT,
name="l",
displayName="l",
), # type: ignore
Column(
dataTypeDisplay="time64[us]",
dataType=DataType.DATETIME,
name="n",
displayName="n",
), # type: ignore
Column(
dataTypeDisplay="timestamp[ns]",
dataType=DataType.DATETIME,
name="o",
displayName="o",
), # type: ignore
Column(
dataTypeDisplay="date32[day]",
dataType=DataType.DATE,
name="p",
displayName="p",
), # type: ignore
Column(
dataTypeDisplay="date32[day]",
dataType=DataType.DATE,
name="q",
displayName="q",
), # type: ignore
Column(
dataTypeDisplay="duration[ns]",
dataType=DataType.INT,
name="r",
displayName="r",
), # type: ignore
Column(
dataTypeDisplay="binary",
dataType=DataType.BINARY,
name="t",
displayName="t",
), # type: ignore
Column(
dataTypeDisplay="string",
dataType=DataType.STRING,
name="u",
displayName="u",
), # type: ignore
Column(
dataTypeDisplay="string",
dataType=DataType.STRING,
name="v",
displayName="v",
), # type: ignore
Column(
dataTypeDisplay="binary",
dataType=DataType.BINARY,
name="w",
displayName="w",
), # type: ignore
Column(
dataTypeDisplay="string",
dataType=DataType.STRING,
name="x",
displayName="x",
), # type: ignore
Column(
dataTypeDisplay="string",
dataType=DataType.STRING,
name="y",
displayName="y",
), # type: ignore
Column(
dataTypeDisplay="list<item: int64>",
dataType=DataType.ARRAY,
name="aa",
displayName="aa",
), # type: ignore
Column(
dataTypeDisplay="list<item: int64>",
dataType=DataType.ARRAY,
name="bb",
displayName="bb",
), # type: ignore
Column(
dataTypeDisplay="struct<ee: int64, ff: int64, gg: struct<hh: struct<ii: int64, jj: int64, kk: int64>>>",
dataType=DataType.STRUCT,
name="dd",
displayName="dd",
children=[
Column(
dataTypeDisplay="int64",
dataType=DataType.INT,
name="ee",
displayName="ee",
), # type: ignore
Column(
dataTypeDisplay="int64",
dataType=DataType.INT,
name="ff",
displayName="ff",
), # type: ignore
Column(
dataTypeDisplay="struct<hh: struct<ii: int64, jj: int64, kk: int64>>",
dataType=DataType.STRUCT,
name="gg",
displayName="gg",
children=[
Column(
dataTypeDisplay="struct<ii: int64, jj: int64, kk: int64>",
dataType=DataType.STRUCT,
name="hh",
displayName="hh",
children=[
Column(
dataTypeDisplay="int64",
dataType=DataType.INT,
name="ii",
displayName="ii",
), # type: ignore
Column(
dataTypeDisplay="int64",
dataType=DataType.INT,
name="jj",
displayName="jj",
), # type: ignore
Column(
dataTypeDisplay="int64",
dataType=DataType.INT,
name="kk",
displayName="kk",
), # type: ignore
],
),
],
),
],
), # type: ignore
]
actual = self.parquet_parser.get_columns()
for validation in zip(expected, actual):
with self.subTest(validation=validation):
expected_col, actual_col = validation
self.assertEqual(expected_col.name, actual_col.name)
self.assertEqual(expected_col.displayName, actual_col.displayName)
self.assertEqual(expected_col.dataType, actual_col.dataType)
def _validate_parsed_column(self, expected, actual):
"""validate parsed column"""
self.assertEqual(expected.name, actual.name)
self.assertEqual(expected.dataType, actual.dataType)
self.assertEqual(expected.displayName, actual.displayName)
if expected.children:
self.assertEqual(len(expected.children), len(actual.children))
for validation in zip(expected.children, actual.children):
with self.subTest(validation=validation):
expected_col, actual_col = validation
self._validate_parsed_column(expected_col, actual_col)