RounakDhillon a062d32b0c
Docs: ML Model Connector content and feature Correction (#19645)
Co-authored-by: Rounak Dhillon <rounakdhillon@Rounaks-MacBook-Air.local>
2025-02-03 13:28:13 +00:00

2.8 KiB

title slug
Run the MLflow Connector Externally /connectors/ml-model/mlflow/yaml

{% connectorDetailsHeader name="MLflow" stage="PROD" platform="OpenMetadata" availableFeatures=["ML Features", "Hyperparameters", "ML Store"] unavailableFeatures=[] / %}

In this section, we provide guides and references to use the MLflow connector.

Configure and schedule MLflow metadata and profiler workflows from the OpenMetadata UI:

{% partial file="/v1.6/connectors/external-ingestion-deployment.md" /%}

Requirements

Python Requirements

{% partial file="/v1.6/connectors/python-requirements.md" /%}

To run the MLflow ingestion, you will need to install:

pip3 install "openmetadata-ingestion[mlflow]"

Metadata Ingestion

All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to MLflow.

In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.

The workflow is modeled around the following JSON Schema

1. Define the YAML Config

This is a sample config for MLflow:

{% codePreview %}

{% codeInfoContainer %}

Source Configuration - Service Connection

{% codeInfo srNumber=1 %}

trackingUri: MLflow Experiment tracking URI. E.g., http://localhost:5000

{% /codeInfo %}

{% codeInfo srNumber=2 %}

registryUri: MLflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments

{% /codeInfo %}

{% partial file="/v1.6/connectors/yaml/ml-model/source-config-def.md" /%}

{% partial file="/v1.6/connectors/yaml/ingestion-sink-def.md" /%}

{% partial file="/v1.6/connectors/yaml/workflow-config-def.md" /%}

{% /codeInfoContainer %}

{% codeBlock fileName="filename.yaml" %}

source:
  type: mlflow
  serviceName: local_mlflow
  serviceConnection:
    config:
      type: Mlflow
      trackingUri: http://localhost:5000
      registryUri: mysql+pymysql://mlflow:password@localhost:3307/experiments

{% partial file="/v1.6/connectors/yaml/ml-model/source-config.md" /%}

{% partial file="/v1.6/connectors/yaml/ingestion-sink.md" /%}

{% partial file="/v1.6/connectors/yaml/workflow-config.md" /%}

{% /codeBlock %}

{% /codePreview %}

{% partial file="/v1.6/connectors/yaml/ingestion-cli.md" /%}