2025-06-17 11:59:45 +05:30

5.6 KiB

title slug
External Profiler Workflow /how-to-guides/data-quality-observability/profiler/external-workflow

External Profiler Workflow

{% note %}

Note that this requires OpenMetadata 1.2.1 or higher.

{% /note %}

Consider a use case where you have a large database source with multiple databases and schemas which are maintained by different teams within your organization. You have created multiple database services within OpenMetadata depending on your use case by applying various filters on this large source. Now, instead of running a profiler pipeline for each service, you want to run a single workflow profiler for the entire source, irrespective of the OpenMetadata service which an asset would belong to. This document will guide you on how to achieve this.

{% note %}

Note that running a single profiler workflow is only supported if you run the workflow externally, not from OpenMetadata.

{% /note %}

{% partial file="/v1.6/connectors/external-ingestion-deployment.md" /%}

Requirements

In order to run the external profiler with external sample data you will need to install the following packages:

pip install "openmetadata-ingestion[<connector>,datalake,trino]~=1.2.1"

Where <connector> is the name of the connector that you want to run against. Each specific installation command will be shared on its documentation page.

For example, to run against Athena, we need to install:

pip install "openmetadata-ingestion[athena,datalake,trino]~=1.2.1"
  • The athena plugin will bring all the requirements to connect to the Athena Service
  • The datalake plugin helps us connect to S3 to manage the sample data
  • The trino plugin will only be needed temporarily

1. Define the YAML Config

You will need to prepare a yaml file for the data profiler depending on the database source. You can get details of how to define a yaml file for data profiler for each connector here.

For example, consider if the data source was snowflake, then the yaml file would have looked like as follows.

source:
  type: snowflake
  serviceConnection:
    config:
      type: Snowflake
      username: my_username
      password: my_password
      account: snow-account-name
      warehouse: COMPUTE_WH
  sourceConfig:
    config:
      type: Profiler
      generateSampleData: true
      computeMetrics: true
      # schemaFilterPattern:
      #   includes:
      #   # - .*mydatabase.*
      #   - .*default.*
      # tableFilterPattern:
      #   includes:
      #   # - ^cloudfront_logs11$
      #   - ^map_table$
      #   # - .*om_glue_test.*
processor:
  type: "orm-profiler"
  config:
    tableConfig:
    - fullyQualifiedName: local_snowflake.mydatabase.mydschema.mytable
      sampleDataCount: 50
    # schemaConfig:
    # - fullyQualifiedName: demo_snowflake.new_database.new_dschema
    #   sampleDataCount: 50
    #   profileSample: 1
    #   profileSampleType: ROWS
    #   sampleDataStorageConfig:
    #     config:
    #       bucketName: awsdatalake-testing
    #       prefix: data/sales/demo1
    #       overwriteData: false
    #       storageConfig:
    #         awsRegion: us-east-2
    #         awsAccessKeyId: <your-access-key-id>
    #         awsSecretAccessKey: <your-secrets-access-key>
    #         awsSessionToken: <your-session-token>
    #         assumeRoleArn: <assume-role-arn>
    #         assumeRoleSessionName: <session-name>
    #         assumeRoleSourceIdentity: <source-identity-assume-role>
    # databaseConfig:
    # - fullyQualifiedName: snowflake_prod.prod_db
    #   sampleDataCount: 50
    #   profileSample: 1
    #   profileSampleType: ROWS
    #   sampleDataStorageConfig:
    #     config:
    #       bucketName: awsdatalake-testing
    #       prefix: data/sales/demo1
    #       overwriteData: false
    #       storageConfig:
    #         awsRegion: us-east-2
    #         awsAccessKeyId: <your-access-key-id>
    #         awsSecretAccessKey: <your-secrets-access-key>
    #         awsSessionToken: <your-session-token>
    #         assumeRoleArn: <assume-role-arn>
    #         assumeRoleSessionName: <session-name>
    #         assumeRoleSourceIdentity: <source-identity-assume-role>
sink:
  type: metadata-rest
  config: {}
workflowConfig:
  loggerLevel: DEBUG
  openMetadataServerConfig:
    hostPort: http://localhost:8585/api
    authProvider: openmetadata
    securityConfig:
      jwtToken: "your-jwt-token"

{% note %}

Note that we do NOT pass the Service Name in this yaml file, unlike your typical profiler workflow

{% /note %}

2. Run the Workflow

Run the Workflow with the CLI

One option to running the workflow externally is by leveraging the metadata CLI.

After saving the YAML config, we will run the command:

metadata profile -c <path-to-yaml>

Run the Workflow from Python using the SDK

If you'd rather have a Python script taking care of the execution, you can use:

from metadata.workflow.profiler import ProfilerWorkflow
from metadata.workflow.workflow_output_handler import print_status

# Specify your YAML configuration
CONFIG = """
source:
  ...
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: openmetadata
    securityConfig:
      jwtToken: ...
"""

def run():
    workflow_config = yaml.safe_load(CONFIG)
    workflow = ProfilerWorkflow.create(workflow_config)
    workflow.execute()
    workflow.raise_from_status()
    print_status(workflow)
    workflow.stop()


if __name__ == "__main__":
  run()