Pere Miquel Brull 34fbe5d64c
Docs - Prepare 1.7 docs and 1.8 snapshot (#20882)
* DOCS - Prepare 1.7 Release and 1.8 SNAPSHOT

* DOCS - Prepare 1.7 Release and 1.8 SNAPSHOT
2025-04-18 12:12:17 +05:30

3.2 KiB

title slug
Run the Sagemaker Connector Externally /connectors/ml-model/sagemaker/yaml

{% connectorDetailsHeader name="Sagemaker" stage="PROD" platform="OpenMetadata" availableFeatures=["ML Store"] unavailableFeatures=["ML Features", "Hyperparameters"] / %}

In this section, we provide guides and references to use the Sagemaker connector.

Configure and schedule Sagemaker metadata and profiler workflows from the OpenMetadata UI:

{% partial file="/v1.7/connectors/external-ingestion-deployment.md" /%}

Requirements

OpenMetadata retrieves information about models and tags associated with the models in the AWS account. The user must have the following policy set to ingest the metadata from Sagemaker.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "SageMakerPolicy",
            "Effect": "Allow",
            "Action": [
                "sagemaker:ListModels",
                "sagemaker:DescribeModel",
                "sagemaker:ListTags"
            ],
            "Resource": "*"
        }
    ]
}

For more information on Sagemaker permissions visit the AWS Sagemaker official documentation.

Python Requirements

{% partial file="/v1.7/connectors/python-requirements.md" /%}

To run the Sagemaker ingestion, you will need to install:

pip3 install "openmetadata-ingestion[sagemaker]"

Metadata Ingestion

All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Sagemaker.

In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.

The workflow is modeled around the following JSON Schema

1. Define the YAML Config

This is a sample config for Sagemaker:

{% codePreview %}

{% codeInfoContainer %}

Source Configuration - Service Connection

{% partial file="/v1.7/connectors/yaml/common/aws-config-def.md" /%}

{% partial file="/v1.7/connectors/yaml/ml-model/source-config-def.md" /%}

{% partial file="/v1.7/connectors/yaml/ingestion-sink-def.md" /%}

{% partial file="/v1.7/connectors/yaml/workflow-config-def.md" /%}

{% /codeInfoContainer %}

{% codeBlock fileName="filename.yaml" %}

source:
  type: sagemaker
  serviceName: local_sagemaker
  serviceConnection:
    config:
      type: SageMaker
      awsConfig:

{% partial file="/v1.7/connectors/yaml/common/aws-config.md" /%}

{% partial file="/v1.7/connectors/yaml/ml-model/source-config.md" /%}

{% partial file="/v1.7/connectors/yaml/ingestion-sink.md" /%}

{% partial file="/v1.7/connectors/yaml/workflow-config.md" /%}

{% /codeBlock %}

{% /codePreview %}

{% partial file="/v1.7/connectors/yaml/ingestion-cli.md" /%}