
* DOCS - Prepare 1.7 Release and 1.8 SNAPSHOT * DOCS - Prepare 1.7 Release and 1.8 SNAPSHOT
3.0 KiB
title | slug |
---|---|
Run the ADLS Datalake Connector Externally | /connectors/database/adls-datalake/yaml |
{% connectorDetailsHeader name="ADLS Datalake" stage="PROD" platform="OpenMetadata" availableFeatures=["Metadata", "Data Profiler", "Data Quality", "Sample Data"] unavailableFeatures=["Query Usage", "Lineage", "Column-level Lineage", "Owners", "dbt", "Tags", "Stored Procedures"] / %}
In this section, we provide guides and references to use the ADLS Datalake connector.
Configure and schedule ADLS Datalake metadata and profiler workflows from the OpenMetadata UI:
{% partial file="/v1.8/connectors/external-ingestion-deployment.md" /%}
Requirements
Note: ADLS Datalake connector supports extracting metadata from file types JSON
, CSV
, TSV
& Parquet
.
ADLS Permissions
To extract metadata from Azure ADLS (Storage Account - StorageV2), you will need an App Registration with the following permissions on the Storage Account:
- Storage Blob Data Reader
- Storage Queue Data Reader
Python Requirements
{% partial file="/v1.8/connectors/python-requirements.md" /%}
Azure installation
pip3 install "openmetadata-ingestion[datalake-azure]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema.
1. Define the YAML Config
This is a sample config for Datalake using Azure:
{% codePreview %}
{% codeInfoContainer %}
Source Configuration - Service Connection
{% partial file="/v1.8/connectors/yaml/common/azure-config-def.md" /%}
{% partial file="/v1.8/connectors/yaml/database/source-config-def.md" /%}
{% partial file="/v1.8/connectors/yaml/ingestion-sink-def.md" /%}
{% partial file="/v1.8/connectors/yaml/workflow-config-def.md" /%}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
# Datalake with Azure
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
{% partial file="/v1.8/connectors/yaml/common/azure-config.md" /%}
prefix: prefix
{% partial file="/v1.8/connectors/yaml/database/source-config.md" /%}
{% partial file="/v1.8/connectors/yaml/ingestion-sink.md" /%}
{% partial file="/v1.8/connectors/yaml/workflow-config.md" /%}
{% /codeBlock %}
{% /codePreview %}
{% partial file="/v1.8/connectors/yaml/ingestion-cli.md" /%}
dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage here.