
* DOCS - Prepare 1.7 Release and 1.8 SNAPSHOT * DOCS - Prepare 1.7 Release and 1.8 SNAPSHOT
3.4 KiB
title | slug | collate |
---|---|---|
Run the VertexAI Connector Externally | /connectors/ml-model/vertexai/yaml | true |
{% connectorDetailsHeader name="VertexAI" stage="BETA" platform="Collate" availableFeatures=["ML Store", "ML Features", "Hyper parameters"] unavailableFeatures=[] / %}
In this section, we provide guides and references to use the VertexAI connector.
Configure and schedule VertexAI metadata from the OpenMetadata UI:
{% partial file="/v1.8/connectors/external-ingestion-deployment.md" /%}
Requirements
Python Requirements
{% partial file="/v1.8/connectors/python-requirements.md" /%}
To run the VertexAI ingestion, you will need to install:
pip3 install "openmetadata-ingestion[vertexai]"
GCP Permissions
To execute metadata extraction workflow successfully the user or the service account should have enough access to fetch required data. Following table describes the minimum required permissions
{% multiTablesWrapper %}
# | GCP Permission | Required For |
---|---|---|
1 | aiplatform.models.get | Metadata Ingestion |
2 | aiplatform.models.list | Metadata Ingestion |
{% /multiTablesWrapper %}
Metadata Ingestion
1. Define the YAML Config
This is a sample config for VertexAI:
{% codePreview %}
{% codeInfoContainer %}
Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
credentials:
You can authenticate with your vertexai instance using either GCP Credentials Path
where you can specify the file path of the service account key or you can pass the values directly by choosing the GCP Credentials Values
from the service account key file.
You can checkout this documentation on how to create the service account keys and download it.
gcpConfig:
1. Passing the raw credential values provided by VertexAI. This requires us to provide the following information, all provided by VertexAI:
{% /codeInfo %}
{% partial file="/v1.8/connectors/yaml/common/gcp-config.md" /%}
{% codeInfo srNumber=4 %}
2. Passing a local file path that contains the credentials:
- gcpCredentialsPath
Location:
Location refers to the geographical region where your resources, such as datasets, models, and endpoints, are physically hosted.(e.g. us-central1
, europe-west4
)
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
source:
type: vertexai
serviceName: localvx
serviceConnection:
config:
type: VertexAI
credentials:
gcpConfig:
{% partial file="/v1.8/connectors/yaml/common/gcp-config.md" /%}
location: PROJECT LOCATION/REGION (us-central1)
# connectionOptions:
# key: value
# connectionArguments:
# key: value
{% partial file="/v1.8/connectors/yaml/database/source-config.md" /%}
{% partial file="/v1.8/connectors/yaml/ingestion-sink.md" /%}
{% partial file="/v1.8/connectors/yaml/workflow-config.md" /%}
{% /codeBlock %}
{% /codePreview %}
{% partial file="/v1.8/connectors/yaml/ingestion-cli.md" /%}