2025-07-03 17:39:09 +05:30

2.1 KiB

title description slug
MLflow Connector | OpenMetadata ML Model Integration Connect MLflow to OpenMetadata seamlessly with our comprehensive connector guide. Learn setup, configuration, and ML model metadata integration in minutes. /connectors/ml-model/mlflow

{% connectorDetailsHeader name="MLflow" stage="PROD" platform="OpenMetadata" availableFeatures=["ML Features", "Hyperparameters", "ML Store"] unavailableFeatures=[] / %}

In this section, we provide guides and references to use the MLflow connector.

Configure and schedule MLflow metadata and profiler workflows from the OpenMetadata UI:

{% partial file="/v1.9/connectors/ingestion-modes-tiles.md" variables={yamlPath: "/connectors/ml-model/mlflow/yaml"} /%}

Requirements

To extract metadata, OpenMetadata needs two elements:

  • Tracking URI: Address of local or remote tracking server. More information on the MLflow documentation here
  • Registry URI: Address of local or remote model registry server.

Metadata Ingestion

{% partial file="/v1.9/connectors/metadata-ingestion-ui.md" variables={ connector: "Mlflow", selectServicePath: "/images/v1.9/connectors/mlflow/select-service.png", addNewServicePath: "/images/v1.9/connectors/mlflow/add-new-service.png", serviceConnectionPath: "/images/v1.9/connectors/mlflow/service-connection.png", } /%}

{% stepsContainer %} {% extraContent parentTagName="stepsContainer" %}

Connection Details

  • trackingUri: Mlflow Experiment tracking URI. E.g., http://localhost:5000
  • registryUri: Mlflow Model registry backend. E.g., mysql+pymysql://mlflow:password@localhost:3307/experiments

{% /extraContent %}

{% partial file="/v1.9/connectors/test-connection.md" /%}

{% partial file="/v1.9/connectors/ml-model/configure-ingestion.md" /%}

{% partial file="/v1.9/connectors/ingestion-schedule-and-deploy.md" /%}

{% /stepsContainer %}