mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-08-18 14:06:59 +00:00

* refactor!: change partition metadata structure for table entities * refactor!: updated json schema for TypeScript code gen * chore: migration of partition for table entities * style: python & java linting * updated ui side change for table partitioned key * miner fix * addressing comments * fixed ci error --------- Co-authored-by: Shailesh Parmar <shailesh.parmar.webdev@gmail.com>
129 lines
4.6 KiB
Python
129 lines
4.6 KiB
Python
# Copyright 2021 Collate
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Interfaces with database for all database engine
|
|
supporting sqlalchemy abstraction layer
|
|
"""
|
|
import math
|
|
import random
|
|
from typing import cast
|
|
|
|
from metadata.data_quality.validations.table.pandas.tableRowInsertedCountToBeBetween import (
|
|
TableRowInsertedCountToBeBetweenValidator,
|
|
)
|
|
from metadata.generated.schema.entity.data.table import (
|
|
PartitionIntervalTypes,
|
|
PartitionProfilerConfig,
|
|
ProfileSampleType,
|
|
)
|
|
from metadata.readers.dataframe.models import DatalakeTableSchemaWrapper
|
|
from metadata.utils.datalake.datalake_utils import fetch_dataframe
|
|
from metadata.utils.logger import test_suite_logger
|
|
|
|
logger = test_suite_logger()
|
|
|
|
|
|
class PandasInterfaceMixin:
|
|
"""Interface mixin grouping shared methods between test suite and profiler interfaces"""
|
|
|
|
def get_partitioned_df(self, dfs):
|
|
"""Get partitioned dataframe
|
|
|
|
Returns:
|
|
DataFrame
|
|
"""
|
|
self.table_partition_config = cast(
|
|
PartitionProfilerConfig, self.table_partition_config
|
|
)
|
|
partition_field = self.table_partition_config.partitionColumnName
|
|
if (
|
|
self.table_partition_config.partitionIntervalType
|
|
== PartitionIntervalTypes.COLUMN_VALUE
|
|
):
|
|
return [
|
|
df[
|
|
df[partition_field].isin(
|
|
self.table_partition_config.partitionValues
|
|
)
|
|
]
|
|
for df in dfs
|
|
]
|
|
if (
|
|
self.table_partition_config.partitionIntervalType
|
|
== PartitionIntervalTypes.INTEGER_RANGE
|
|
):
|
|
return [
|
|
df[
|
|
df[partition_field].between(
|
|
self.table_partition_config.partitionIntegerRangeStart,
|
|
self.table_partition_config.partitionIntegerRangeEnd,
|
|
)
|
|
]
|
|
for df in dfs
|
|
]
|
|
return [
|
|
df[
|
|
df[partition_field]
|
|
>= TableRowInsertedCountToBeBetweenValidator._get_threshold_date( # pylint: disable=protected-access
|
|
self.table_partition_config.partitionIntervalUnit.value,
|
|
self.table_partition_config.partitionInterval,
|
|
)
|
|
]
|
|
for df in dfs
|
|
]
|
|
|
|
def return_ometa_dataframes_sampled(
|
|
self, service_connection_config, client, table, profile_sample_config
|
|
):
|
|
"""
|
|
returns sampled ometa dataframes
|
|
"""
|
|
data = fetch_dataframe(
|
|
config_source=service_connection_config.configSource,
|
|
client=client,
|
|
file_fqn=DatalakeTableSchemaWrapper(
|
|
key=table.name.__root__,
|
|
bucket_name=table.databaseSchema.name,
|
|
file_extension=table.fileFormat,
|
|
),
|
|
)
|
|
if data:
|
|
random.shuffle(data)
|
|
# sampling data based on profiler config (if any)
|
|
if hasattr(profile_sample_config, "profile_sample"):
|
|
if (
|
|
profile_sample_config.profile_sample_type
|
|
== ProfileSampleType.PERCENTAGE
|
|
):
|
|
return [
|
|
df.sample(
|
|
frac=profile_sample_config.profile_sample / 100,
|
|
random_state=random.randint(0, 100),
|
|
replace=True,
|
|
)
|
|
for df in data
|
|
]
|
|
if profile_sample_config.profile_sample_type == ProfileSampleType.ROWS:
|
|
sample_rows_per_chunk: int = math.floor(
|
|
profile_sample_config.profile_sample / len(data)
|
|
)
|
|
return [
|
|
df.sample(
|
|
n=sample_rows_per_chunk,
|
|
random_state=random.randint(0, 100),
|
|
replace=True,
|
|
)
|
|
for df in data
|
|
]
|
|
return data
|
|
raise TypeError(f"Couldn't fetch {table.name.__root__}")
|