21 KiB
title | slug |
---|---|
Run BigQuery Connector using the CLI | /connectors/database/bigquery/cli |
Run BigQuery using the metadata CLI
In this section, we provide guides and references to use the BigQuery connector.
Configure and schedule BigQuery metadata and profiler workflows from the OpenMetadata UI:
Requirements
To deploy OpenMetadata, check the Deployment guides.To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the BigQuery ingestion, you will need to install:
pip3 install "openmetadata-ingestion[bigquery]"
If you want to run the Usage Connector, you'll also need to install:
pip3 install "openmetadata-ingestion[bigquery-usage]"
GCP Permissions
To execute metadata extraction and usage workflow successfully the user or the service account should have enough access to fetch required data. Following table describes the minimum required permissions
# | GCP Permission | GCP Role | Required For |
---|---|---|---|
1 | bigquery.datasets.get | BigQuery Data Viewer | Metadata Ingestion |
2 | bigquery.tables.get | BigQuery Data Viewer | Metadata Ingestion |
3 | bigquery.tables.getData | BigQuery Data Viewer | Metadata Ingestion |
4 | bigquery.tables.list | BigQuery Data Viewer | Metadata Ingestion |
5 | resourcemanager.projects.get | BigQuery Data Viewer | Metadata Ingestion |
6 | bigquery.jobs.create | BigQuery Job User | Metadata Ingestion |
7 | bigquery.jobs.listAll | BigQuery Job User | Metadata Ingestion |
8 | datacatalog.taxonomies.get | BigQuery Policy Admin | Fetch Policy Tags |
9 | datacatalog.taxonomies.list | BigQuery Policy Admin | Fetch Policy Tags |
10 | bigquery.readsessions.create | BigQuery Admin | Bigquery Usage Workflow |
11 | bigquery.readsessions.getData | BigQuery Admin | Bigquery Usage Workflow |
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to BigQuery.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for BigQuery:
source:
type: bigquery
serviceName: "<service name>"
serviceConnection:
config:
type: BigQuery
credentials:
gcsConfig:
type: My Type
projectId: project ID # ["project-id-1", "project-id-2"]
privateKeyId: us-east-2
privateKey: |
-----BEGIN PRIVATE KEY-----
Super secret key
-----END PRIVATE KEY-----
clientEmail: client@mail.com
clientId: 1234
# authUri: https://accounts.google.com/o/oauth2/auth (default)
# tokenUri: https://oauth2.googleapis.com/token (default)
# authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default)
clientX509CertUrl: https://cert.url
sourceConfig:
config:
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
# For dbt, choose one of Cloud, Local, HTTP, S3 or GCS configurations
# dbtConfigSource:
# # For cloud
# dbtCloudAuthToken: token
# dbtCloudAccountId: ID
# # For Local
# dbtCatalogFilePath: path-to-catalog.json
# dbtManifestFilePath: path-to-manifest.json
# # For HTTP
# dbtCatalogHttpPath: http://path-to-catalog.json
# dbtManifestHttpPath: http://path-to-manifest.json
# # For S3
# dbtSecurityConfig: # These are modeled after all AWS credentials
# awsAccessKeyId: KEY
# awsSecretAccessKey: SECRET
# awsRegion: us-east-2
# dbtPrefixConfig:
# dbtBucketName: bucket
# dbtObjectPrefix: "dbt/"
# # For GCS
# dbtSecurityConfig: # These are modeled after all GCS credentials
# type: My Type
# projectId: project ID
# privateKeyId: us-east-2
# privateKey: |
# -----BEGIN PRIVATE KEY-----
# Super secret key
# -----END PRIVATE KEY-----
# clientEmail: client@mail.com
# clientId: 1234
# authUri: https://accounts.google.com/o/oauth2/auth (default)
# tokenUri: https://oauth2.googleapis.com/token (default)
# authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default)
# clientX509CertUrl: https://cert.url (URI)
# dbtPrefixConfig:
# dbtBucketName: bucket
# dbtObjectPrefix: "dbt/"
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
Source Configuration - Service Connection
- hostPort: This is the BigQuery APIs URL.
- username: (Optional) Specify the User to connect to BigQuery. It should have enough privileges to read all the metadata.
- projectID: (Optional) The BigQuery Project ID is required only if the credentials path is being used instead of values.
- credentials: We support two ways of authenticating to BigQuery inside gcsConfig
- Passing the raw credential values provided by BigQuery. This requires us to provide the following information, all provided by BigQuery:
- type, e.g.,
service_account
- projectId
- privateKey
- privateKeyId
- clientEmail
- clientId
- authUri, https://accounts.google.com/o/oauth2/auth by defaul
- tokenUri, https://oauth2.googleapis.com/token by default
- authProviderX509CertUrl, https://www.googleapis.com/oauth2/v1/certs by default
- clientX509CertUrl
- type, e.g.,
- Passing a local file path that contains the credentials:
- gcsCredentialsPath
- Passing the raw credential values provided by BigQuery. This requires us to provide the following information, all provided by BigQuery:
If you prefer to pass the credentials file, you can do so as follows:
credentials:
gcsConfig: <path to file>
- Enable Policy Tag Import (Optional): Mark as 'True' to enable importing policy tags from BigQuery to OpenMetadata.
- Classification Name (Optional): If the Tag import is enabled, the name of the Classification will be created at OpenMetadata.
- Database (Optional): The database of the data source is an optional parameter, if you would like to restrict the metadata reading to a single database. If left blank, OpenMetadata ingestion attempts to scan all the databases.
- Connection Options (Optional): Enter the details for any additional connection options that can be sent to BigQuery during the connection. These details must be added as Key-Value pairs.
- Connection Arguments (Optional): Enter the details for any additional connection arguments such as security or protocol configs that can be sent to BigQuery during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the
authenticator
details in the Connection Arguments as a Key-Value pair as follows:"authenticator" : "sso_login_url"
- In case you authenticate with SSO using an external browser popup, then add the
authenticator
details in the Connection Arguments as a Key-Value pair as follows:"authenticator" : "externalbrowser"
- In case you are using Single-Sign-On (SSO) for authentication, add the
If you want to use ADC authentication for BigQuery you can just leave the GCS credentials empty. This is why they are not marked as required.
...
config:
type: BigQuery
credentials:
gcsConfig: {}
...
Source Configuration - Source Config
The sourceConfig
is defined here:
markDeletedTables
: To flag tables as soft-deleted if they are not present anymore in the source system.includeTables
: true or false, to ingest table data. Default is true.includeViews
: true or false, to ingest views definitions.databaseFilterPattern
,schemaFilterPattern
,tableFilternPattern
: Note that the they support regex as include or exclude. E.g.,
tableFilterPattern:
includes:
- users
- type_test
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.
Openmetadata JWT Auth
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
Auth0 SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Azure SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
Custom OIDC SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Google SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
Okta SSO
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
Amazon Cognito SSO
The ingestion can be configured by Enabling JWT Tokens
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
OneLogin SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
KeyCloak SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
metadata ingest -c <path-to-yaml>
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.
Query Usage and Lineage Ingestion
To ingest the Query Usage and Lineage information, the serviceConnection
configuration will remain the same.
However, the sourceConfig
is now modeled after this JSON Schema.
1. Define the YAML Config
This is a sample config for BigQuery Usage:
source:
type: bigquery-usage
serviceName: <service name>
serviceConnection:
config:
type: BigQuery
credentials:
gcsConfig:
type: My Type
projectId: project ID # ["project-id-1", "project-id-2"]
privateKeyId: us-east-2
privateKey: |
-----BEGIN PRIVATE KEY-----
Super secret key
-----END PRIVATE KEY-----
clientEmail: client@mail.com
clientId: 1234
# authUri: https://accounts.google.com/o/oauth2/auth (default)
# tokenUri: https://oauth2.googleapis.com/token (default)
# authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default)
clientX509CertUrl: https://cert.url
sourceConfig:
config:
# Number of days to look back
queryLogDuration: 7
# This is a directory that will be DELETED after the usage runs
stageFileLocation: <path to store the stage file>
# resultLimit: 1000
# If instead of getting the query logs from the database we want to pass a file with the queries
# queryLogFilePath: path-to-file
processor:
type: query-parser
config: {}
stage:
type: table-usage
config:
filename: /tmp/bigquery_usage
bulkSink:
type: metadata-usage
config:
filename: /tmp/bigquery_usage
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
Source Configuration - Service Connection
You can find all the definitions and types for the serviceConnection
here.
They are the same as metadata ingestion.
Source Configuration - Source Config
The sourceConfig
is defined here.
queryLogDuration
: Configuration to tune how far we want to look back in query logs to process usage data.resultLimit
: Configuration to set the limit for query logs
Processor, Stage and Bulk Sink
To specify where the staging files will be located.
Note that the location is a directory that will be cleaned at the end of the ingestion.
Workflow Configuration
The same as the metadata ingestion.
2. Run with the CLI
There is an extra requirement to run the Usage pipelines. You will need to install:
pip3 install --upgrade 'openmetadata-ingestion[bigquery-usage]'
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
metadata ingest -c <path-to-yaml>
Data Profiler
The Data Profiler workflow will be using the orm-profiler
processor.
While the serviceConnection
will still be the same to reach the source system, the sourceConfig
will be
updated from previous configurations.
1. Define the YAML Config
This is a sample config for the profiler:
source:
type: bigquery
serviceName: <service name>
serviceConnection:
config:
type: BigQuery
credentials:
gcsConfig:
type: My Type
projectId: project ID # ["project-id-1", "project-id-2"]
privateKeyId: us-east-2
privateKey: |
-----BEGIN PRIVATE KEY-----
Super secret key
-----END PRIVATE KEY-----
clientEmail: client@mail.com
clientId: 1234
# authUri: https://accounts.google.com/o/oauth2/auth (default)
# tokenUri: https://oauth2.googleapis.com/token (default)
# authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default)
clientX509CertUrl: https://cert.url
sourceConfig:
config:
type: Profiler
# generateSampleData: true
# profileSample: 85
# threadCount: 5 (default)
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <table fqn>
# profileSample: <number between 0 and 99> # default will be 100 if omitted
# profileQuery: <query to use for sampling data for the profiler>
# columnConfig:
# excludeColumns:
# - <column name>
# includeColumns:
# - columnName: <column name>
# - metrics:
# - MEAN
# - MEDIAN
# - ...
# partitionConfig:
# enablePartitioning: <set to true to use partitioning>
# partitionColumnName: <partition column name. Must be a timestamp or datetime/date field type>
# partitionInterval: <partition interval>
# partitionIntervalUnit: <YEAR, MONTH, DAY, HOUR>
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
Source Configuration
- You can find all the definitions and types for the
serviceConnection
here. - The
sourceConfig
is defined here.
Note that the filter patterns support regex as includes or excludes. E.g.,
tableFilterPattern:
includes:
- *users$
Processor
Choose the orm-profiler
. Its config can also be updated to define tests from the YAML itself instead of the UI:
processor:
type: orm-profiler
config:
tableConfig:
- fullyQualifiedName: <table fqn>
profileSample: <number between 0 and 99>
partitionConfig:
partitionField: <field to use as a partition field>
partitionQueryDuration: <for date/datetime partitioning based set the offset from today>
partitionValues: <values to uses as a predicate for the query>
profileQuery: <query to use for sampling data for the profiler>
columnConfig:
excludeColumns:
- <column name>
includeColumns:
- columnName: <column name>
- metrics:
- MEAN
- MEDIAN
- ...
tableConfig
allows you to set up some configuration at the table level.
All the properties are optional. metrics
should be one of the metrics listed here
Workflow Configuration
The same as the metadata ingestion.
2. Run with the CLI
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
metadata profile -c <path-to-yaml>
Note how instead of running ingest
, we are using the profile
command to select the Profiler workflow.
dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage here.