mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-13 03:59:45 +00:00
564 lines
18 KiB
Markdown
564 lines
18 KiB
Markdown
---
|
|
title: Run Postgres Connector using the CLI
|
|
slug: /connectors/database/postgres/cli
|
|
---
|
|
|
|
# Run Postgres using the metadata CLI
|
|
|
|
In this section, we provide guides and references to use the Postgres connector.
|
|
|
|
Configure and schedule Postgres metadata and profiler workflows from the OpenMetadata UI:
|
|
- [Requirements](#requirements)
|
|
- [Metadata Ingestion](#metadata-ingestion)
|
|
- [Query Usage and Lineage Ingestion](#query-usage-and-lineage-ingestion)
|
|
- [Data Profiler](#data-profiler)
|
|
- [dbt Integration](#dbt-integration)
|
|
|
|
## Requirements
|
|
|
|
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
|
|
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
|
|
</InlineCallout>
|
|
|
|
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
|
|
custom Airflow plugins to handle the workflow deployment.
|
|
|
|
<Note>
|
|
|
|
Note that we only support officially supported Postgres versions. You can check the version list [here](https://www.postgresql.org/support/versioning/).
|
|
|
|
</Note>
|
|
|
|
### Usage and Lineage considerations
|
|
|
|
When extracting lineage and usage information from Postgres we base our finding on the `pg_stat_statements` table.
|
|
You can find more information about it on the official [docs](https://www.postgresql.org/docs/current/pgstatstatements.html#id-1.11.7.39.6).
|
|
|
|
Another interesting consideration here is explained in the following SO [question](https://stackoverflow.com/questions/50803147/what-is-the-timeframe-for-pg-stat-statements).
|
|
As a summary:
|
|
- The `pg_stat_statements` has no time data embedded in it.
|
|
- It will show all queries from the last reset (one can call `pg_stat_statements_reset()`).
|
|
|
|
Then, when extracting usage and lineage data, the query log duration will have no impact, only the query limit.
|
|
|
|
### Python Requirements
|
|
|
|
To run the Postgres ingestion, you will need to install:
|
|
|
|
```bash
|
|
pip3 install "openmetadata-ingestion[postgres]"
|
|
```
|
|
|
|
## Metadata Ingestion
|
|
|
|
All connectors are defined as JSON Schemas.
|
|
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/postgresConnection.json)
|
|
you can find the structure to create a connection to Postgres.
|
|
|
|
In order to create and run a Metadata Ingestion workflow, we will follow
|
|
the steps to create a YAML configuration able to connect to the source,
|
|
process the Entities if needed, and reach the OpenMetadata server.
|
|
|
|
The workflow is modeled around the following
|
|
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
|
|
|
|
### 1. Define the YAML Config
|
|
|
|
This is a sample config for Postgres:
|
|
|
|
```yaml
|
|
source:
|
|
type: postgres
|
|
serviceName: local_postgres
|
|
serviceConnection:
|
|
config:
|
|
type: Postgres
|
|
username: username
|
|
password: password
|
|
hostPort: localhost:5432
|
|
# database: database
|
|
sourceConfig:
|
|
config:
|
|
markDeletedTables: true
|
|
includeTables: true
|
|
includeViews: true
|
|
# includeTags: true
|
|
# databaseFilterPattern:
|
|
# includes:
|
|
# - database1
|
|
# - database2
|
|
# excludes:
|
|
# - database3
|
|
# - database4
|
|
# schemaFilterPattern:
|
|
# includes:
|
|
# - schema1
|
|
# - schema2
|
|
# excludes:
|
|
# - schema3
|
|
# - schema4
|
|
# tableFilterPattern:
|
|
# includes:
|
|
# - table1
|
|
# - table2
|
|
# excludes:
|
|
# - table3
|
|
# - table4
|
|
# For dbt, choose one of Cloud, Local, HTTP, S3 or GCS configurations
|
|
# dbtConfigSource:
|
|
# # For cloud
|
|
# dbtCloudAuthToken: token
|
|
# dbtCloudAccountId: ID
|
|
# # For Local
|
|
# dbtCatalogFilePath: path-to-catalog.json
|
|
# dbtManifestFilePath: path-to-manifest.json
|
|
# # For HTTP
|
|
# dbtCatalogHttpPath: http://path-to-catalog.json
|
|
# dbtManifestHttpPath: http://path-to-manifest.json
|
|
# # For S3
|
|
# dbtSecurityConfig: # These are modeled after all AWS credentials
|
|
# awsAccessKeyId: KEY
|
|
# awsSecretAccessKey: SECRET
|
|
# awsRegion: us-east-2
|
|
# dbtPrefixConfig:
|
|
# dbtBucketName: bucket
|
|
# dbtObjectPrefix: "dbt/"
|
|
# # For GCS
|
|
# dbtSecurityConfig: # These are modeled after all GCS credentials
|
|
# type: My Type
|
|
# projectId: project ID
|
|
# privateKeyId: us-east-2
|
|
# privateKey: |
|
|
# -----BEGIN PRIVATE KEY-----
|
|
# Super secret key
|
|
# -----END PRIVATE KEY-----
|
|
# clientEmail: client@mail.com
|
|
# clientId: 1234
|
|
# authUri: https://accounts.google.com/o/oauth2/auth (default)
|
|
# tokenUri: https://oauth2.googleapis.com/token (default)
|
|
# authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default)
|
|
# clientX509CertUrl: https://cert.url (URI)
|
|
# dbtPrefixConfig:
|
|
# dbtBucketName: bucket
|
|
# dbtObjectPrefix: "dbt/"
|
|
sink:
|
|
type: metadata-rest
|
|
config: {}
|
|
workflowConfig:
|
|
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
|
|
openMetadataServerConfig:
|
|
hostPort: <OpenMetadata host and port>
|
|
authProvider: <OpenMetadata auth provider>2. Configure service settings
|
|
```
|
|
|
|
#### Source Configuration - Service Connection
|
|
|
|
- **username**: Specify the User to connect to Postgres. It should have enough privileges to read all the metadata.
|
|
- **password**: Password to connect to Postgres.
|
|
- **hostPort**: Enter the fully qualified hostname and port number for your Postgres deployment in the Host and Port field.
|
|
- **Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Postgres during the connection. These details must be added as Key-Value pairs.
|
|
- **Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Postgres during the connection. These details must be added as Key-Value pairs.
|
|
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
|
|
- In case you authenticate with SSO using an external browser popup, then add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "externalbrowser"`
|
|
|
|
#### Source Configuration - Source Config
|
|
|
|
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
|
|
|
|
- `markDeletedTables`: To flag tables as soft-deleted if they are not present anymore in the source system.
|
|
- `includeTables`: true or false, to ingest table data. Default is true.
|
|
- `includeViews`: true or false, to ingest views definitions.
|
|
- `databaseFilterPattern`, `schemaFilterPattern`, `tableFilternPattern`: Note that the they support regex as include or exclude. E.g.,
|
|
|
|
```yaml
|
|
tableFilterPattern:
|
|
includes:
|
|
- users
|
|
- type_test
|
|
```
|
|
|
|
#### Sink Configuration
|
|
|
|
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
|
|
|
|
#### Workflow Configuration
|
|
|
|
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
|
|
|
|
For a simple, local installation using our docker containers, this looks like:
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: openmetadata
|
|
securityConfig:
|
|
jwtToken: '{bot_jwt_token}'
|
|
```
|
|
|
|
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
|
|
You can find the different implementation of the ingestion below.
|
|
|
|
<Collapse title="Configure SSO in the Ingestion Workflows">
|
|
|
|
### Openmetadata JWT Auth
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: openmetadata
|
|
securityConfig:
|
|
jwtToken: '{bot_jwt_token}'
|
|
```
|
|
|
|
### Auth0 SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: auth0
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### Azure SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: azure
|
|
securityConfig:
|
|
clientSecret: '{your_client_secret}'
|
|
authority: '{your_authority_url}'
|
|
clientId: '{your_client_id}'
|
|
scopes:
|
|
- your_scopes
|
|
```
|
|
|
|
### Custom OIDC SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: custom-oidc
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### Google SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: google
|
|
securityConfig:
|
|
secretKey: '{path-to-json-creds}'
|
|
```
|
|
|
|
### Okta SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: http://localhost:8585/api
|
|
authProvider: okta
|
|
securityConfig:
|
|
clientId: "{CLIENT_ID - SPA APP}"
|
|
orgURL: "{ISSUER_URL}/v1/token"
|
|
privateKey: "{public/private keypair}"
|
|
email: "{email}"
|
|
scopes:
|
|
- token
|
|
```
|
|
|
|
### Amazon Cognito SSO
|
|
|
|
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: auth0
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### OneLogin SSO
|
|
|
|
Which uses Custom OIDC for the ingestion
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: custom-oidc
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### KeyCloak SSO
|
|
|
|
Which uses Custom OIDC for the ingestion
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: custom-oidc
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
</Collapse>
|
|
|
|
### 2. Run with the CLI
|
|
|
|
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
|
|
|
|
```bash
|
|
metadata ingest -c <path-to-yaml>
|
|
```
|
|
|
|
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
|
|
you will be able to extract metadata from different sources.
|
|
|
|
## Query Usage and Lineage Ingestion
|
|
|
|
To ingest the Query Usage and Lineage information, the `serviceConnection` configuration will remain the same.
|
|
However, the `sourceConfig` is now modeled after this JSON Schema.
|
|
|
|
### 1. Define the YAML Config
|
|
|
|
This is a sample config for Postgres Usage:
|
|
|
|
```yaml
|
|
source:
|
|
type: postgres
|
|
serviceName: local_postgres
|
|
serviceConnection:
|
|
config:
|
|
type: Postgres
|
|
username: username
|
|
password: password
|
|
hostPort: localhost:5432
|
|
# database: database
|
|
sourceConfig:
|
|
config:
|
|
# Number of days to look back
|
|
queryLogDuration: 7
|
|
# This is a directory that will be DELETED after the usage runs
|
|
stageFileLocation: <path to store the stage file>
|
|
# resultLimit: 1000
|
|
# If instead of getting the query logs from the database we want to pass a file with the queries
|
|
# queryLogFilePath: path-to-file
|
|
processor:
|
|
type: query-parser
|
|
config: {}
|
|
stage:
|
|
type: table-usage
|
|
config:
|
|
filename: /tmp/postgres_usage
|
|
bulkSink:
|
|
type: metadata-usage
|
|
config:
|
|
filename: /tmp/postgres_usage
|
|
workflowConfig:
|
|
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
|
|
openMetadataServerConfig:
|
|
hostPort: <OpenMetadata host and port>
|
|
authProvider: <OpenMetadata auth provider>
|
|
```
|
|
|
|
#### Source Configuration - Service Connection
|
|
|
|
You can find all the definitions and types for the `serviceConnection` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/postgresConnection.json).
|
|
They are the same as metadata ingestion.
|
|
|
|
#### Source Configuration - Source Config
|
|
|
|
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceQueryUsagePipeline.json).
|
|
|
|
- `queryLogDuration`: Configuration to tune how far we want to look back in query logs to process usage data.
|
|
- `resultLimit`: Configuration to set the limit for query logs
|
|
|
|
#### Processor, Stage and Bulk Sink
|
|
|
|
To specify where the staging files will be located.
|
|
|
|
Note that the location is a directory that will be cleaned at the end of the ingestion.
|
|
|
|
#### Workflow Configuration
|
|
|
|
The same as the metadata ingestion.
|
|
|
|
### 2. Run with the CLI
|
|
|
|
There is an extra requirement to run the Usage pipelines. You will need to install:
|
|
|
|
```bash
|
|
pip3 install --upgrade 'openmetadata-ingestion[postgres]'
|
|
```
|
|
|
|
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
|
|
|
|
```bash
|
|
metadata ingest -c <path-to-yaml>
|
|
```
|
|
|
|
|
|
## Data Profiler
|
|
|
|
The Data Profiler workflow will be using the `orm-profiler` processor.
|
|
While the `serviceConnection` will still be the same to reach the source system, the `sourceConfig` will be
|
|
updated from previous configurations.
|
|
|
|
### 1. Define the YAML Config
|
|
|
|
This is a sample config for the profiler:
|
|
|
|
```yaml
|
|
source:
|
|
type: postgres
|
|
serviceName: local_postgres
|
|
serviceConnection:
|
|
config:
|
|
type: Postgres
|
|
username: username
|
|
password: password
|
|
hostPort: localhost:5432
|
|
# database: database
|
|
sourceConfig:
|
|
config:
|
|
type: Profiler
|
|
# generateSampleData: true
|
|
# profileSample: 85
|
|
# threadCount: 5 (default)
|
|
# databaseFilterPattern:
|
|
# includes:
|
|
# - database1
|
|
# - database2
|
|
# excludes:
|
|
# - database3
|
|
# - database4
|
|
# schemaFilterPattern:
|
|
# includes:
|
|
# - schema1
|
|
# - schema2
|
|
# excludes:
|
|
# - schema3
|
|
# - schema4
|
|
# tableFilterPattern:
|
|
# includes:
|
|
# - table1
|
|
# - table2
|
|
# excludes:
|
|
# - table3
|
|
# - table4
|
|
processor:
|
|
type: orm-profiler
|
|
config: {} # Remove braces if adding properties
|
|
# tableConfig:
|
|
# - fullyQualifiedName: <table fqn>
|
|
# profileSample: <number between 0 and 99> # default will be 100 if omitted
|
|
# profileQuery: <query to use for sampling data for the profiler>
|
|
# columnConfig:
|
|
# excludeColumns:
|
|
# - <column name>
|
|
# includeColumns:
|
|
# - columnName: <column name>
|
|
# - metrics:
|
|
# - MEAN
|
|
# - MEDIAN
|
|
# - ...
|
|
# partitionConfig:
|
|
# enablePartitioning: <set to true to use partitioning>
|
|
# partitionColumnName: <partition column name. Must be a timestamp or datetime/date field type>
|
|
# partitionInterval: <partition interval>
|
|
# partitionIntervalUnit: <YEAR, MONTH, DAY, HOUR>
|
|
sink:
|
|
type: metadata-rest
|
|
config: {}
|
|
workflowConfig:
|
|
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
|
|
openMetadataServerConfig:
|
|
hostPort: <OpenMetadata host and port>
|
|
authProvider: <OpenMetadata auth provider>
|
|
```
|
|
|
|
#### Source Configuration
|
|
|
|
- You can find all the definitions and types for the `serviceConnection` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/postgresConnection.json).
|
|
- The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
|
|
|
|
Note that the filter patterns support regex as includes or excludes. E.g.,
|
|
|
|
```yaml
|
|
tableFilterPattern:
|
|
includes:
|
|
- *users$
|
|
```
|
|
|
|
#### Processor
|
|
|
|
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
|
|
|
|
```yaml
|
|
processor:
|
|
type: orm-profiler
|
|
config:
|
|
tableConfig:
|
|
- fullyQualifiedName: <table fqn>
|
|
profileSample: <number between 0 and 99>
|
|
partitionConfig:
|
|
partitionField: <field to use as a partition field>
|
|
partitionQueryDuration: <for date/datetime partitioning based set the offset from today>
|
|
partitionValues: <values to uses as a predicate for the query>
|
|
profileQuery: <query to use for sampling data for the profiler>
|
|
columnConfig:
|
|
excludeColumns:
|
|
- <column name>
|
|
includeColumns:
|
|
- columnName: <column name>
|
|
- metrics:
|
|
- MEAN
|
|
- MEDIAN
|
|
- ...
|
|
```
|
|
|
|
`tableConfig` allows you to set up some configuration at the table level.
|
|
All the properties are optional. `metrics` should be one of the metrics listed [here](https://docs.open-metadata.org/openmetadata/ingestion/workflows/profiler/metrics)
|
|
|
|
#### Workflow Configuration
|
|
|
|
The same as the metadata ingestion.
|
|
|
|
### 2. Run with the CLI
|
|
|
|
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
|
|
|
|
```bash
|
|
metadata profile -c <path-to-yaml>
|
|
```
|
|
|
|
Note how instead of running `ingest`, we are using the `profile` command to select the Profiler workflow.
|
|
|
|
## dbt Integration
|
|
|
|
You can learn more about how to ingest dbt models' definitions and their lineage [here](/connectors/ingestion/workflows/dbt).
|