Sriharsha Chintalapani 538e827f5f
Fix Menu , Connectors should've its own section after deployment (#7950)
* Fix Menu

* Fix broken links

* Fix config values

* Fix config values
2022-10-06 06:54:02 +02:00

299 lines
8.6 KiB
Markdown

---
title: Run Airflow Connector using the CLI
slug: /connectors/pipeline/airflow/cli
---
# Run Airflow using the metadata CLI
In this section, we provide guides and references to use the Airbyte connector.
Configure and schedule Airbyte metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
</InlineCallout>
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Airflow ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[airflow]"
```
Note that this installs the same Airflow version that we ship in the Ingestion Container, which is
Airflow `2.3.3` from Release `0.12`.
The ingestion using Airflow version 2.3.3 as a source package has been tested against Airflow 2.3.3 and Airflow 2.2.5.
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/pipeline/airbyteConnection.json)
you can find the structure to create a connection to Airbyte.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Airbyte:
```yaml
source:
type: airflow
serviceName: airflow_source
serviceConnection:
config:
type: Airflow
hostPort: http://localhost:8080
numberOfStatus: 10
# Connection needs to be one of Mysql, Postgres, Mssql or Sqlite
connection:
type: Mysql
username: airflow_user
password: airflow_pass
databaseSchema: airflow_db
hostPort: localhost:3306
# #
# type: Postgres
# username: airflow_user
# password: airflow_pass
# database: airflow_db
# hostPort: localhost:3306
# #
# type: Mssql
# username: airflow_user
# password: airflow_pass
# database: airflow_db
# hostPort: localhost:3306
# uriString: http://... (optional)
# #
# type: Sqlite
# username: airflow_user
# password: airflow_pass
# database: airflow_db
# hostPort: localhost:3306
# databaseMode: ":memory:" (optional)
sourceConfig:
config:
type: PipelineMetadata
# includeLineage: true
# pipelineFilterPattern:
# includes:
# - pipeline1
# - pipeline2
# excludes:
# - pipeline3
# - pipeline4
sink:
type: metadata-rest
config: { }
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
#### Source Configuration - Service Connection
- **hostPort**: URL to the Airflow instance.
- **numberOfStatus**: Number of status we want to look back to in every ingestion (e.g., Past executions from a DAG).
- **connection**: Airflow metadata database connection. See
these [docs](https://airflow.apache.org/docs/apache-airflow/stable/howto/set-up-database.html)
for supported backends.
In terms of `connection` we support the following selections:
- `backend`: Should not be used from the UI. This is only applicable when ingesting Airflow metadata locally by running
the ingestion from a DAG. It will use the current Airflow SQLAlchemy connection to extract the data.
- `MySQL`, `Postgres`, `MSSQL` and `SQLite`: Pass the required credentials to reach out each of these services. We will
create a connection to the pointed database and read Airflow data from there.
#### Source Configuration - Source Config
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/pipelineServiceMetadataPipeline.json):
- `dbServiceName`: Database Service Name for the creation of lineage, if the source supports it.
- `pipelineFilterPattern` and `chartFilterPattern`: Note that the `pipelineFilterPattern` and `chartFilterPattern` both support regex as include or exclude. E.g.,
```yaml
pipelineFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
You can find the different implementation of the ingestion below.
<Collapse title="Configure SSO in the Ingestion Workflows">
### Openmetadata JWT Auth
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
</Collapse>
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.