mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-14 04:29:21 +00:00
299 lines
8.6 KiB
Markdown
299 lines
8.6 KiB
Markdown
---
|
|
title: Run Airflow Connector using the CLI
|
|
slug: /connectors/pipeline/airflow/cli
|
|
---
|
|
|
|
# Run Airflow using the metadata CLI
|
|
|
|
In this section, we provide guides and references to use the Airbyte connector.
|
|
|
|
Configure and schedule Airbyte metadata and profiler workflows from the OpenMetadata UI:
|
|
- [Requirements](#requirements)
|
|
- [Metadata Ingestion](#metadata-ingestion)
|
|
|
|
## Requirements
|
|
|
|
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
|
|
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
|
|
</InlineCallout>
|
|
|
|
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
|
|
custom Airflow plugins to handle the workflow deployment.
|
|
|
|
### Python Requirements
|
|
|
|
To run the Airflow ingestion, you will need to install:
|
|
|
|
```bash
|
|
pip3 install "openmetadata-ingestion[airflow]"
|
|
```
|
|
|
|
Note that this installs the same Airflow version that we ship in the Ingestion Container, which is
|
|
Airflow `2.3.3` from Release `0.12`.
|
|
|
|
The ingestion using Airflow version 2.3.3 as a source package has been tested against Airflow 2.3.3 and Airflow 2.2.5.
|
|
|
|
## Metadata Ingestion
|
|
|
|
All connectors are defined as JSON Schemas.
|
|
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/pipeline/airbyteConnection.json)
|
|
you can find the structure to create a connection to Airbyte.
|
|
|
|
In order to create and run a Metadata Ingestion workflow, we will follow
|
|
the steps to create a YAML configuration able to connect to the source,
|
|
process the Entities if needed, and reach the OpenMetadata server.
|
|
|
|
The workflow is modeled around the following
|
|
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
|
|
|
|
### 1. Define the YAML Config
|
|
|
|
This is a sample config for Airbyte:
|
|
|
|
```yaml
|
|
source:
|
|
type: airflow
|
|
serviceName: airflow_source
|
|
serviceConnection:
|
|
config:
|
|
type: Airflow
|
|
hostPort: http://localhost:8080
|
|
numberOfStatus: 10
|
|
# Connection needs to be one of Mysql, Postgres, Mssql or Sqlite
|
|
connection:
|
|
type: Mysql
|
|
username: airflow_user
|
|
password: airflow_pass
|
|
databaseSchema: airflow_db
|
|
hostPort: localhost:3306
|
|
# #
|
|
# type: Postgres
|
|
# username: airflow_user
|
|
# password: airflow_pass
|
|
# database: airflow_db
|
|
# hostPort: localhost:3306
|
|
# #
|
|
# type: Mssql
|
|
# username: airflow_user
|
|
# password: airflow_pass
|
|
# database: airflow_db
|
|
# hostPort: localhost:3306
|
|
# uriString: http://... (optional)
|
|
# #
|
|
# type: Sqlite
|
|
# username: airflow_user
|
|
# password: airflow_pass
|
|
# database: airflow_db
|
|
# hostPort: localhost:3306
|
|
# databaseMode: ":memory:" (optional)
|
|
sourceConfig:
|
|
config:
|
|
type: PipelineMetadata
|
|
# includeLineage: true
|
|
# pipelineFilterPattern:
|
|
# includes:
|
|
# - pipeline1
|
|
# - pipeline2
|
|
# excludes:
|
|
# - pipeline3
|
|
# - pipeline4
|
|
sink:
|
|
type: metadata-rest
|
|
config: { }
|
|
workflowConfig:
|
|
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
|
|
openMetadataServerConfig:
|
|
hostPort: <OpenMetadata host and port>
|
|
authProvider: <OpenMetadata auth provider>
|
|
```
|
|
|
|
#### Source Configuration - Service Connection
|
|
|
|
- **hostPort**: URL to the Airflow instance.
|
|
- **numberOfStatus**: Number of status we want to look back to in every ingestion (e.g., Past executions from a DAG).
|
|
- **connection**: Airflow metadata database connection. See
|
|
these [docs](https://airflow.apache.org/docs/apache-airflow/stable/howto/set-up-database.html)
|
|
for supported backends.
|
|
|
|
In terms of `connection` we support the following selections:
|
|
|
|
- `backend`: Should not be used from the UI. This is only applicable when ingesting Airflow metadata locally by running
|
|
the ingestion from a DAG. It will use the current Airflow SQLAlchemy connection to extract the data.
|
|
- `MySQL`, `Postgres`, `MSSQL` and `SQLite`: Pass the required credentials to reach out each of these services. We will
|
|
create a connection to the pointed database and read Airflow data from there.
|
|
|
|
#### Source Configuration - Source Config
|
|
|
|
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/pipelineServiceMetadataPipeline.json):
|
|
|
|
- `dbServiceName`: Database Service Name for the creation of lineage, if the source supports it.
|
|
- `pipelineFilterPattern` and `chartFilterPattern`: Note that the `pipelineFilterPattern` and `chartFilterPattern` both support regex as include or exclude. E.g.,
|
|
|
|
```yaml
|
|
pipelineFilterPattern:
|
|
includes:
|
|
- users
|
|
- type_test
|
|
```
|
|
|
|
#### Sink Configuration
|
|
|
|
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
|
|
|
|
#### Workflow Configuration
|
|
|
|
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
|
|
|
|
For a simple, local installation using our docker containers, this looks like:
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: openmetadata
|
|
securityConfig:
|
|
jwtToken: '{bot_jwt_token}'
|
|
```
|
|
|
|
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
|
|
You can find the different implementation of the ingestion below.
|
|
|
|
<Collapse title="Configure SSO in the Ingestion Workflows">
|
|
|
|
### Openmetadata JWT Auth
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: openmetadata
|
|
securityConfig:
|
|
jwtToken: '{bot_jwt_token}'
|
|
```
|
|
|
|
### Auth0 SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: auth0
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### Azure SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: azure
|
|
securityConfig:
|
|
clientSecret: '{your_client_secret}'
|
|
authority: '{your_authority_url}'
|
|
clientId: '{your_client_id}'
|
|
scopes:
|
|
- your_scopes
|
|
```
|
|
|
|
### Custom OIDC SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: custom-oidc
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### Google SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: google
|
|
securityConfig:
|
|
secretKey: '{path-to-json-creds}'
|
|
```
|
|
|
|
### Okta SSO
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: http://localhost:8585/api
|
|
authProvider: okta
|
|
securityConfig:
|
|
clientId: "{CLIENT_ID - SPA APP}"
|
|
orgURL: "{ISSUER_URL}/v1/token"
|
|
privateKey: "{public/private keypair}"
|
|
email: "{email}"
|
|
scopes:
|
|
- token
|
|
```
|
|
|
|
### Amazon Cognito SSO
|
|
|
|
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: auth0
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### OneLogin SSO
|
|
|
|
Which uses Custom OIDC for the ingestion
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: custom-oidc
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
### KeyCloak SSO
|
|
|
|
Which uses Custom OIDC for the ingestion
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: custom-oidc
|
|
securityConfig:
|
|
clientId: '{your_client_id}'
|
|
secretKey: '{your_client_secret}'
|
|
domain: '{your_domain}'
|
|
```
|
|
|
|
</Collapse>
|
|
|
|
### 2. Run with the CLI
|
|
|
|
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
|
|
|
|
```bash
|
|
metadata ingest -c <path-to-yaml>
|
|
```
|
|
|
|
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
|
|
you will be able to extract metadata from different sources.
|