mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-11-03 20:19:31 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			357 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			357 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
title: Run DeltaLake Connector using the CLI
 | 
						|
slug: /connectors/database/deltalake/cli
 | 
						|
---
 | 
						|
 | 
						|
# Run Deltalake using the metadata CLI
 | 
						|
 | 
						|
In this section, we provide guides and references to use the Deltalake connector.
 | 
						|
 | 
						|
Configure and schedule Deltalake metadata and profiler workflows from the OpenMetadata UI:
 | 
						|
- [Requirements](#requirements)
 | 
						|
- [Metadata Ingestion](#metadata-ingestion)
 | 
						|
- [dbt Integration](#dbt-integration)
 | 
						|
 | 
						|
## Requirements
 | 
						|
 | 
						|
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12.1 or later" href="/deployment">
 | 
						|
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
 | 
						|
</InlineCallout>
 | 
						|
 | 
						|
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
 | 
						|
custom Airflow plugins to handle the workflow deployment.
 | 
						|
 | 
						|
### Python Requirements
 | 
						|
 | 
						|
To run the Deltalake ingestion, you will need to install:
 | 
						|
 | 
						|
```bash
 | 
						|
pip3 install "openmetadata-ingestion[deltalake]"
 | 
						|
```
 | 
						|
 | 
						|
## Metadata Ingestion
 | 
						|
 | 
						|
All connectors are defined as JSON Schemas.
 | 
						|
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/deltaLakeConnection.json)
 | 
						|
you can find the structure to create a connection to Deltalake.
 | 
						|
 | 
						|
In order to create and run a Metadata Ingestion workflow, we will follow
 | 
						|
the steps to create a YAML configuration able to connect to the source,
 | 
						|
process the Entities if needed, and reach the OpenMetadata server.
 | 
						|
 | 
						|
The workflow is modeled around the following
 | 
						|
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
 | 
						|
 | 
						|
### 1. Define the YAML Config
 | 
						|
 | 
						|
This is a sample config for Deltalake:
 | 
						|
 | 
						|
```yaml
 | 
						|
source:
 | 
						|
  type: deltalake
 | 
						|
  serviceName: "<service name>"
 | 
						|
  serviceConnection:
 | 
						|
    config:
 | 
						|
      type: DeltaLake
 | 
						|
      metastoreConnection:
 | 
						|
        # Pick only of the three
 | 
						|
        metastoreHostPort: "<metastore host port>"
 | 
						|
        # metastoreDb: jdbc:mysql://localhost:3306/demo_hive
 | 
						|
        # metastoreFilePath: "<path_to_metastore>/metastore_db"
 | 
						|
      appName: MyApp
 | 
						|
  sourceConfig:
 | 
						|
    config:
 | 
						|
      markDeletedTables: true
 | 
						|
      includeTables: true
 | 
						|
      includeViews: true
 | 
						|
      # includeTags: true
 | 
						|
      # databaseFilterPattern:
 | 
						|
      #   includes:
 | 
						|
      #     - database1
 | 
						|
      #     - database2
 | 
						|
      #   excludes:
 | 
						|
      #     - database3
 | 
						|
      #     - database4
 | 
						|
      # schemaFilterPattern:
 | 
						|
      #   includes:
 | 
						|
      #     - schema1
 | 
						|
      #     - schema2
 | 
						|
      #   excludes:
 | 
						|
      #     - schema3
 | 
						|
      #     - schema4
 | 
						|
      # tableFilterPattern:
 | 
						|
      #   includes:
 | 
						|
      #     - table1
 | 
						|
      #     - table2
 | 
						|
      #   excludes:
 | 
						|
      #     - table3
 | 
						|
      #     - table4
 | 
						|
      # For dbt, choose one of Cloud, Local, HTTP, S3 or GCS configurations
 | 
						|
      # dbtConfigSource:
 | 
						|
      # # For cloud
 | 
						|
      #   dbtCloudAuthToken: token
 | 
						|
      #   dbtCloudAccountId: ID
 | 
						|
      # # For Local
 | 
						|
      #   dbtCatalogFilePath: path-to-catalog.json
 | 
						|
      #   dbtManifestFilePath: path-to-manifest.json
 | 
						|
      # # For HTTP
 | 
						|
      #   dbtCatalogHttpPath: http://path-to-catalog.json
 | 
						|
      #   dbtManifestHttpPath: http://path-to-manifest.json
 | 
						|
      # # For S3
 | 
						|
      #   dbtSecurityConfig:  # These are modeled after all AWS credentials
 | 
						|
      #     awsAccessKeyId: KEY
 | 
						|
      #     awsSecretAccessKey: SECRET
 | 
						|
      #     awsRegion: us-east-2
 | 
						|
      #   dbtPrefixConfig:
 | 
						|
      #     dbtBucketName: bucket
 | 
						|
      #     dbtObjectPrefix: "dbt/"
 | 
						|
      # # For GCS
 | 
						|
      #   dbtSecurityConfig:  # These are modeled after all GCS credentials
 | 
						|
      #     type: My Type
 | 
						|
      #     projectId: project ID
 | 
						|
      #     privateKeyId: us-east-2
 | 
						|
      #     privateKey: |
 | 
						|
      #      -----BEGIN PRIVATE KEY-----
 | 
						|
      #      Super secret key
 | 
						|
      #      -----END PRIVATE KEY-----
 | 
						|
      #     clientEmail: client@mail.com
 | 
						|
      #     clientId: 1234
 | 
						|
      #     authUri: https://accounts.google.com/o/oauth2/auth (default)
 | 
						|
      #     tokenUri: https://oauth2.googleapis.com/token (default)
 | 
						|
      #     authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default)
 | 
						|
      #     clientX509CertUrl: https://cert.url (URI)
 | 
						|
      #   dbtPrefixConfig:
 | 
						|
      #     dbtBucketName: bucket
 | 
						|
      #     dbtObjectPrefix: "dbt/"
 | 
						|
sink:
 | 
						|
  type: metadata-rest
 | 
						|
  config: {}
 | 
						|
workflowConfig:
 | 
						|
  # loggerLevel: DEBUG  # DEBUG, INFO, WARN or ERROR
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: "<OpenMetadata host and port>"
 | 
						|
    authProvider: "<OpenMetadata auth provider>"
 | 
						|
 | 
						|
```
 | 
						|
 | 
						|
#### Source Configuration - Service Connection
 | 
						|
 | 
						|
- **Metastore Host Port**: Enter the Host & Port of Hive Metastore Service to configure the Spark Session. Either
 | 
						|
  of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
 | 
						|
- **Metastore File Path**: Enter the file path to local Metastore in case Spark cluster is running locally. Either
 | 
						|
  of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
 | 
						|
- **Metastore DB**: The JDBC connection to the underlying Hive metastore DB. Either
 | 
						|
  of `metastoreHostPort`, `metastoreDb` or `metastoreFilePath` is required.
 | 
						|
- **appName (Optional)**: Enter the app name of spark session.
 | 
						|
- **Connection Arguments (Optional)**: Key-Value pairs that will be used to pass extra `config` elements to the Spark
 | 
						|
  Session builder.
 | 
						|
 | 
						|
We are internally running with `pyspark` 3.X and `delta-lake` 2.0.0. This means that we need to consider Spark
 | 
						|
configuration options for 3.X.
 | 
						|
 | 
						|
##### Metastore Host Port
 | 
						|
 | 
						|
When connecting to an External Metastore passing the parameter `Metastore Host Port`, we will be preparing a Spark Session with the configuration
 | 
						|
 | 
						|
```
 | 
						|
.config("hive.metastore.uris", "thrift://{connection.metastoreHostPort}") 
 | 
						|
```
 | 
						|
 | 
						|
Then, we will be using the `catalog` functions from the Spark Session to pick up the metadata exposed by the Hive Metastore.
 | 
						|
 | 
						|
##### Metastore File Path
 | 
						|
 | 
						|
If instead we use a local file path that contains the metastore information (e.g., for local testing with the default `metastore_db` directory), we will set
 | 
						|
 | 
						|
```
 | 
						|
.config("spark.driver.extraJavaOptions", "-Dderby.system.home={connection.metastoreFilePath}") 
 | 
						|
```
 | 
						|
 | 
						|
To update the `Derby` information. More information about this in a great [SO thread](https://stackoverflow.com/questions/38377188/how-to-get-rid-of-derby-log-metastore-db-from-spark-shell).
 | 
						|
 | 
						|
- You can find all supported configurations [here](https://spark.apache.org/docs/latest/configuration.html)
 | 
						|
- If you need further information regarding the Hive metastore, you can find
 | 
						|
  it [here](https://spark.apache.org/docs/3.0.0-preview/sql-data-sources-hive-tables.html), and in The Internals of
 | 
						|
  Spark SQL [book](https://jaceklaskowski.gitbooks.io/mastering-spark-sql/content/spark-sql-hive-metastore.html).
 | 
						|
 | 
						|
#### Source Configuration - Source Config
 | 
						|
 | 
						|
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
 | 
						|
 | 
						|
- `markDeletedTables`: To flag tables as soft-deleted if they are not present anymore in the source system.
 | 
						|
- `includeTables`: true or false, to ingest table data. Default is true.
 | 
						|
- `includeViews`: true or false, to ingest views definitions.
 | 
						|
- `databaseFilterPattern`, `schemaFilterPattern`, `tableFilternPattern`: Note that the they support regex as include or exclude. E.g.,
 | 
						|
 | 
						|
```yaml
 | 
						|
tableFilterPattern:
 | 
						|
  includes:
 | 
						|
    - users
 | 
						|
    - type_test
 | 
						|
```
 | 
						|
 | 
						|
#### Sink Configuration
 | 
						|
 | 
						|
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
 | 
						|
 | 
						|
#### Workflow Configuration
 | 
						|
 | 
						|
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
 | 
						|
 | 
						|
For a simple, local installation using our docker containers, this looks like:
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: openmetadata
 | 
						|
    securityConfig:
 | 
						|
      jwtToken: '{bot_jwt_token}'
 | 
						|
```
 | 
						|
 | 
						|
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
 | 
						|
You can find the different implementation of the ingestion below.
 | 
						|
 | 
						|
<Collapse title="Configure SSO in the Ingestion Workflows">
 | 
						|
 | 
						|
### Openmetadata JWT Auth
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: openmetadata
 | 
						|
    securityConfig:
 | 
						|
      jwtToken: '{bot_jwt_token}'
 | 
						|
```
 | 
						|
 | 
						|
### Auth0 SSO
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: auth0
 | 
						|
    securityConfig:
 | 
						|
      clientId: '{your_client_id}'
 | 
						|
      secretKey: '{your_client_secret}'
 | 
						|
      domain: '{your_domain}'
 | 
						|
```
 | 
						|
 | 
						|
### Azure SSO
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: azure
 | 
						|
    securityConfig:
 | 
						|
      clientSecret: '{your_client_secret}'
 | 
						|
      authority: '{your_authority_url}'
 | 
						|
      clientId: '{your_client_id}'
 | 
						|
      scopes:
 | 
						|
        - your_scopes
 | 
						|
```
 | 
						|
 | 
						|
### Custom OIDC SSO
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: custom-oidc
 | 
						|
    securityConfig:
 | 
						|
      clientId: '{your_client_id}'
 | 
						|
      secretKey: '{your_client_secret}'
 | 
						|
      domain: '{your_domain}'
 | 
						|
```
 | 
						|
 | 
						|
### Google SSO
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: google
 | 
						|
    securityConfig:
 | 
						|
      secretKey: '{path-to-json-creds}'
 | 
						|
```
 | 
						|
 | 
						|
### Okta SSO
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: http://localhost:8585/api
 | 
						|
    authProvider: okta
 | 
						|
    securityConfig:
 | 
						|
      clientId: "{CLIENT_ID - SPA APP}"
 | 
						|
      orgURL: "{ISSUER_URL}/v1/token"
 | 
						|
      privateKey: "{public/private keypair}"
 | 
						|
      email: "{email}"
 | 
						|
      scopes:
 | 
						|
        - token
 | 
						|
```
 | 
						|
 | 
						|
### Amazon Cognito SSO
 | 
						|
 | 
						|
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: auth0
 | 
						|
    securityConfig:
 | 
						|
      clientId: '{your_client_id}'
 | 
						|
      secretKey: '{your_client_secret}'
 | 
						|
      domain: '{your_domain}'
 | 
						|
```
 | 
						|
 | 
						|
### OneLogin SSO
 | 
						|
 | 
						|
Which uses Custom OIDC for the ingestion
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: custom-oidc
 | 
						|
    securityConfig:
 | 
						|
      clientId: '{your_client_id}'
 | 
						|
      secretKey: '{your_client_secret}'
 | 
						|
      domain: '{your_domain}'
 | 
						|
```
 | 
						|
 | 
						|
### KeyCloak SSO
 | 
						|
 | 
						|
Which uses Custom OIDC for the ingestion
 | 
						|
 | 
						|
```yaml
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: 'http://localhost:8585/api'
 | 
						|
    authProvider: custom-oidc
 | 
						|
    securityConfig:
 | 
						|
      clientId: '{your_client_id}'
 | 
						|
      secretKey: '{your_client_secret}'
 | 
						|
      domain: '{your_domain}'
 | 
						|
```
 | 
						|
 | 
						|
</Collapse>
 | 
						|
 | 
						|
### 2. Run with the CLI
 | 
						|
 | 
						|
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
 | 
						|
 | 
						|
```bash
 | 
						|
metadata ingest -c <path-to-yaml>
 | 
						|
```
 | 
						|
 | 
						|
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
 | 
						|
you will be able to extract metadata from different sources.
 | 
						|
 | 
						|
## dbt Integration
 | 
						|
 | 
						|
You can learn more about how to ingest dbt models' definitions and their lineage [here](/connectors/ingestion/workflows/dbt).
 |