2023-04-14 19:28:31 +05:30

291 lines
8.5 KiB
Markdown

---
title: Run PowerBI Connector using the CLI
slug: /connectors/dashboard/powerbi/cli
---
# Run PowerBI using the metadata CLI
In this section, we provide guides and references to use the PowerBI connector.
Configure and schedule PowerBI metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
## Requirements
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
</InlineCallout>
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the PowerBI ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[powerbi]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/dashboard/powerBIConnection.json)
you can find the structure to create a connection to PowerBI.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for PowerBI:
```yaml
source:
type: powerbi
serviceName: local_powerbi
serviceConnection:
config:
clientId: clientId
clientSecret: secret
tenantId: tenant
# scope:
# - https://analysis.windows.net/powerbi/api/.default (default)
# authorityURI: https://login.microsoftonline.com/ (default)
# hostPort: https://analysis.windows.net/powerbi (default)
# pagination_entity_per_page: 100 (default)
# useAdminApis: true or false
type: PowerBI
sourceConfig:
config:
type: DashboardMetadata
overrideOwner: True
markDeletedDashboards: True
includeTags: True
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
#### Source Configuration - Service Connection
- **hostPort**: URL to the PowerBI instance.
- **clientId**: PowerBI Client ID.
- **clientSecret**: PowerBI Client Secret.
- **tenantId**: PowerBI Tenant ID.
- **authorityUri**: Authority URI for the service.
- **scope**: Service scope. By default `["https://analysis.windows.net/powerbi/api/.default"]`.
- **Pagination Entity Per Page**: Entity Limit set here will be used to paginate the PowerBi APIs. PowerBi API do not allow more than 100 workspaces to be inputed at a time. This field sets the limit of entities used for paginating the powerbi APIs. By default 100
- **Use PowerBI Admin APIs**:
Option for using the PowerBI admin APIs:
1. Enabled (Use PowerBI Admin APIs):
Using the admin APIs will fetch the dashboard and chart metadata from all the workspaces available in the powerbi instance
2. Disabled (Use Non-Admin PowerBI APIs):
Using the non-admin APIs will only fetch the dashboard and chart metadata from the workspaces that have the security group of the service principal assigned to them.
#### Source Configuration - Source Config
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/dashboardServiceMetadataPipeline.json):
- `dbServiceNames`: Database Service Name for the creation of lineage, if the source supports it.
- `dashboardFilterPattern` / `chartFilterPattern`: Note that all of them support regex as include or exclude. E.g., "My dashboard, My dash.*, .*Dashboard".
- `includeTags`: Set the 'Include Tags' toggle to control whether to include tags as part of metadata ingestion.
- `markDeletedDashboards`: Set the Mark Deleted Dashboards toggle to flag dashboards as soft-deleted if they are not present anymore in the source system.
```yaml
dashboardFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
You can find the different implementation of the ingestion below.
<Collapse title="Configure SSO in the Ingestion Workflows">
### Openmetadata JWT Auth
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
</Collapse>
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.