2023-01-31 21:26:26 +05:30

10 KiB

title slug
Run DomoDatabase Connector using the CLI /connectors/database/domo-database/cli

Run Domo Database using the metadata CLI

Stage Metadata Query Usage Data Profiler Data Quality Lineage DBT Supported Versions
PROD --
Lineage Table-level Column-level

In this section, we provide guides and references to use the Domo Database connector.

Configure and schedule DomoDatabase metadata and profiler workflows from the OpenMetadata UI:

Requirements

To deploy OpenMetadata, check the Deployment guides.

To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.

For metadata ingestion, kindly make sure add alteast data scopes to the clientId provided. Question related to scopes, click here.

Python Requirements

To run the DomoDatabase ingestion, you will need to install:

pip3 install "openmetadata-ingestion[domo]"

Metadata Ingestion

All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to DomoDatbase.

In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.

The workflow is modeled around the following JSON Schema

1. Define the YAML Config

This is a sample config for DomoDatabase:

source:
  type: domodatabase
  serviceName: local_domodatabase
  serviceConnection:
    config:
      type: DomoDatabase
      clientId: clientid
      secretToken: secret-token
      accessToken: access-token
      apiHost: api.domo.com
      sandboxDomain: https://<api_domo>.domo.com
  sourceConfig:
    config:
      type: DatabaseMetadata
sink:
  type: metadata-rest
  config: {}
workflowConfig:
  # loggerLevel: DEBUG  # DEBUG, INFO, WARN or ERROR
  openMetadataServerConfig:
    hostPort: <OpenMetadata host and port>
    authProvider: <OpenMetadata auth provider>
    

Source Configuration - Service Connection

  • Client ID: Client ID to Connect to DOMO Database.
  • Secret Token: Secret Token to Connect DOMO Database.
  • Access Token: Access to Connect to DOMO Database.
  • API Host: API Host to Connect to DOMO Database instance.
  • SandBox Domain: Connect to SandBox Domain.

Source Configuration - Source Config

The sourceConfig is defined here:

  • markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.
  • includeTables: true or false, to ingest table data. Default is true.
  • includeViews: true or false, to ingest views definitions.
  • databaseFilterPattern, schemaFilterPattern, tableFilternPattern: Note that the they support regex as include or exclude. E.g.,
tableFilterPattern:
  includes:
    - users
    - type_test

Sink Configuration

To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest.

Workflow Configuration

The main property here is the openMetadataServerConfig, where you can define the host and security provider of your OpenMetadata installation.

For a simple, local installation using our docker containers, this looks like:

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: openmetadata
    securityConfig:
      jwtToken: '{bot_jwt_token}'

We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.

Openmetadata JWT Auth

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: openmetadata
    securityConfig:
      jwtToken: '{bot_jwt_token}'

Auth0 SSO

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: auth0
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'

Azure SSO

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: azure
    securityConfig:
      clientSecret: '{your_client_secret}'
      authority: '{your_authority_url}'
      clientId: '{your_client_id}'
      scopes:
        - your_scopes

Custom OIDC SSO

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'
      ```

      ### Google SSO

```yaml
workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: google
    securityConfig:
      secretKey: '{path-to-json-creds}'

Okta SSO

workflowConfig:
  openMetadataServerConfig:
    hostPort: http://localhost:8585/api
    authProvider: okta
    securityConfig:
      clientId: "{CLIENT_ID - SPA APP}"
      orgURL: "{ISSUER_URL}/v1/token"
      privateKey: "{public/private keypair}"
      email: "{email}"
      scopes:
        - token

Amazon Cognito SSO

The ingestion can be configured by Enabling JWT Tokens

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: auth0
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'

OneLogin SSO

Which uses Custom OIDC for the ingestion

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'

KeyCloak SSO

Which uses Custom OIDC for the ingestion

workflowConfig:
  openMetadataServerConfig:
    hostPort: 'http://localhost:8585/api'
    authProvider: custom-oidc
    securityConfig:
      clientId: '{your_client_id}'
      secretKey: '{your_client_secret}'
      domain: '{your_domain}'

2. Run with the CLI

First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:

metadata ingest -c <path-to-yaml>

Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.

1. Define the YAML Config

This is a sample config for the profiler:

source:
  type: domodatabase
  serviceName: <service name>
  serviceConnection:
    config:
      type: DomoDatabase
      type: DomoDashboard
      clientId: client-id
      secretToken: secret-token
      accessToken: access-token
      apiHost: api.domo.com
      sandboxDomain: https://<api_domo>.domo.com
        # endPointURL: https://athena.us-east-2.amazonaws.com/
        # awsSessionToken: TOKEN
      s3StagingDir: s3 directory for datasource
      workgroup: workgroup name
  sourceConfig:
    config:
      type: Profiler
      # generateSampleData: true
      # profileSample: 85
      # threadCount: 5 (default)
      # databaseFilterPattern:
      #   includes:
      #     - database1
      #     - database2
      #   excludes:
      #     - database3
      #     - database4
      # schemaFilterPattern:
      #   includes:
      #     - schema1
      #     - schema2
      #   excludes:
      #     - schema3
      #     - schema4
      # tableFilterPattern:
      #   includes:
      #     - table1
      #     - table2
      #   excludes:
      #     - table3
      #     - table4
 - ...
sink:
  type: metadata-rest
  config: {}
workflowConfig:
  # loggerLevel: DEBUG  # DEBUG, INFO, WARN or ERROR
  openMetadataServerConfig:
    hostPort: <OpenMetadata host and port>
    authProvider: <OpenMetadata auth provider>

Source Configuration

  • You can find all the definitions and types for the serviceConnection here.
  • The sourceConfig is defined here.

Note that the filter patterns support regex as includes or excludes. E.g.,

tableFilterPattern:
  includes:
  - *users$

Workflow Configuration

The same as the metadata ingestion.

2. Run with the CLI

After saving the YAML config, we will run the command the same way we did for the metadata ingestion:

metadata profile -c <path-to-yaml>

Note how instead of running ingest, we are using the profile command to select the Profiler workflow.