
* feat(profiler): renamed module to * feat(profiler): added dbt-artifacts-parser to test setup.py * feat(profiler): refactor workflow and interface * feat(profiler): linting * feat(profiler): removed old profiler modules * feat(profiler): added support for value and integer range partition * feat(profiler): fixed linting * feat(profiler): added partitionning support for datalake profiler * feat(profiler): removed `ProfilerInterfaceArgs` class * feat(profiler): address comments * feat(profiler): Added `OTHER` as an `IntervalType` for UI type generation
18 KiB
title | slug |
---|---|
Run MSSQL Connector using Airflow SDK | /connectors/database/mssql/airflow |
Run MSSQL using the Airflow SDK
Stage | Metadata | Query Usage | Data Profiler | Data Quality | Lineage | DBT | Supported Versions |
---|---|---|---|---|---|---|---|
PROD | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | -- |
Lineage | Table-level | Column-level |
---|---|---|
✅ | ✅ | ✅ |
In this section, we provide guides and references to use the MSSQL connector.
Configure and schedule MSSQL metadata and profiler workflows from the OpenMetadata UI:
Requirements
To deploy OpenMetadata, check the Deployment guides.To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the MSSQL ingestion, you will need to install:
pip3 install "openmetadata-ingestion[mssql]"
If you want to run the Usage Connector, you'll also need to install:
pip3 install "openmetadata-ingestion[mssql-usage]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to MSSQL.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for MSSQL:
source:
type: mssql
serviceName: "<service name>"
serviceConnection:
config:
type: Mssql
username: <username>
password: <password>
hostPort: <hostPort>
# database: <database>
sourceConfig:
config:
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
Source Configuration - Service Connection
- scheme: Defines how to connect to MSSQL. We support
mssql+pytds
,mssql+pyodbc
, andmssql+pymssql
. - username: Specify the User to connect to MSSQL. It should have enough privileges to read all the metadata.
- password: Password to connect to MSSQL.
- hostPort: Enter the fully qualified hostname and port number for your MSSQL deployment in the Host and Port field.
- uriString: In case of a
pyodbc
connection. - Database: The database of the data source is an optional parameter, if you would like to restrict the metadata reading to a single database. If left blank, OpenMetadata ingestion attempts to scan all the databases.
- Connection Options (Optional): Enter the details for any additional connection options that can be sent to MSSQL during the connection. These details must be added as Key-Value pairs.
- Connection Arguments (Optional): Enter the details for any additional connection arguments such as security or protocol configs that can be sent to MSSQL during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the
authenticator
details in the Connection Arguments as a Key-Value pair as follows:"authenticator" : "sso_login_url"
- In case you authenticate with SSO using an external browser popup, then add the
authenticator
details in the Connection Arguments as a Key-Value pair as follows:"authenticator" : "externalbrowser"
- In case you are using Single-Sign-On (SSO) for authentication, add the
Source Configuration - Source Config
The sourceConfig
is defined here:
markDeletedTables
: To flag tables as soft-deleted if they are not present anymore in the source system.includeTables
: true or false, to ingest table data. Default is true.includeViews
: true or false, to ingest views definitions.databaseFilterPattern
,schemaFilterPattern
,tableFilternPattern
: Note that the they support regex as include or exclude. E.g.,
tableFilterPattern:
includes:
- users
- type_test
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.
Openmetadata JWT Auth
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
Auth0 SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Azure SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
Custom OIDC SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Google SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
Okta SSO
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
Amazon Cognito SSO
The ingestion can be configured by Enabling JWT Tokens
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
OneLogin SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
KeyCloak SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
config = """
<your YAML configuration>
"""
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.
Query Usage
To ingest the Query Usage, the serviceConnection
configuration will remain the same.
However, the sourceConfig
is now modeled after this JSON Schema.
1. Define the YAML Config
This is a sample config for MSSQL Usage:
source:
type: mssql-usage
serviceName: "<service name>"
serviceConnection:
config:
type: Mssql
username: <username>
password: <password>
hostPort: <hostPort>
# database: <database>
sourceConfig:
config:
# Number of days to look back
queryLogDuration: 7
# This is a directory that will be DELETED after the usage runs
stageFileLocation: <path to store the stage file>
# resultLimit: 1000
# If instead of getting the query logs from the database we want to pass a file with the queries
# queryLogFilePath: path-to-file
processor:
type: query-parser
config: {}
stage:
type: table-usage
config:
filename: "/tmp/mssql_usage"
bulkSink:
type: metadata-usage
config:
filename: "/tmp/mssql_usage"
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
Source Configuration - Service Connection
You can find all the definitions and types for the serviceConnection
here.
They are the same as metadata ingestion.
Source Configuration - Source Config
The sourceConfig
is defined here.
queryLogDuration
: Configuration to tune how far we want to look back in query logs to process usage data.resultLimit
: Configuration to set the limit for query logs
Processor, Stage and Bulk Sink
To specify where the staging files will be located.
Note that the location is a directory that will be cleaned at the end of the ingestion.
Workflow Configuration
The same as the metadata ingestion.
2. Run with the CLI
There is an extra requirement to run the Usage pipelines. You will need to install:
pip3 install --upgrade 'openmetadata-ingestion[mssql-usage]'
For the usage workflow creation, the Airflow file will look the same as for the metadata ingestion. Updating the YAML configuration will be enough.
Data Profiler
The Data Profiler workflow will be using the orm-profiler
processor.
While the serviceConnection
will still be the same to reach the source system, the sourceConfig
will be
updated from previous configurations.
1. Define the YAML Config
This is a sample config for the profiler:
source:
type: mssql
serviceName: "<service name>"
serviceConnection:
config:
type: Mssql
username: <username>
password: <password>
hostPort: <hostPort>
# database: <database>
sourceConfig:
config:
type: Profiler
# generateSampleData: true
# profileSample: 85
# threadCount: 5 (default)
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <table fqn>
# profileSample: <number between 0 and 99> # default will be 100 if omitted
# profileQuery: <query to use for sampling data for the profiler>
# columnConfig:
# excludeColumns:
# - <column name>
# includeColumns:
# - columnName: <column name>
# - metrics:
# - MEAN
# - MEDIAN
# - ...
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
Source Configuration
- You can find all the definitions and types for the
serviceConnection
here. - The
sourceConfig
is defined here.
Note that the filter patterns support regex as includes or excludes. E.g.,
tableFilterPattern:
includes:
- *users$
Processor
Choose the orm-profiler
. Its config can also be updated to define tests from the YAML itself instead of the UI:
processor:
type: orm-profiler
config:
tableConfig:
- fullyQualifiedName: <table fqn>
profileSample: <number between 0 and 99>
partitionConfig:
partitionField: <field to use as a partition field>
partitionQueryDuration: <for date/datetime partitioning based set the offset from today>
partitionValues: <values to uses as a predicate for the query>
profileQuery: <query to use for sampling data for the profiler>
columnConfig:
excludeColumns:
- <column name>
includeColumns:
- columnName: <column name>
- metrics:
- MEAN
- MEDIAN
- ...
tableConfig
allows you to set up some configuration at the table level.
All the properties are optional. metrics
should be one of the metrics listed here
Workflow Configuration
The same as the metadata ingestion.
2. Prepare the Profiler DAG
Here, we follow a similar approach as with the metadata and usage pipelines, although we will use a different Workflow class:
import yaml
from datetime import timedelta
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
from metadata.profiler.api.workflow import ProfilerWorkflow
default_args = {
"owner": "user_name",
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(seconds=10),
"execution_timeout": timedelta(minutes=60),
}
config = """
<your YAML configuration>
"""
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = ProfilerWorkflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
with DAG(
"profiler_example",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="profile_and_test_using_recipe",
python_callable=metadata_ingestion_workflow,
)
Lineage
You can learn more about how to ingest lineage here.
dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage here.