Milan Bariya 3d1bbb1037
Add a configurationto skip Snowflake transient and tmp tables (#10665)
* Add a configurationto skip  Snowflake transient and tmp tables

* Fix Python checkstyle

* add separate query for transient tables

* Move skipTempTables into SnowflakeConnection

* Fix merge conflict

* change skip word to include

* Add title in json file

---------

Co-authored-by: Pere Miquel Brull <peremiquelbrull@gmail.com>
2023-03-28 06:29:59 +02:00

610 lines
19 KiB
Markdown

---
title: Run Snowflake Connector using the CLI
slug: /connectors/database/snowflake/cli
---
# Run Snowflake using the metadata CLI
<Table>
| Stage | Metadata |Query Usage | Data Profiler | Data Quality | Lineage | DBT | Supported Versions |
|:------:|:------:|:-----------:|:-------------:|:------------:|:-------:|:---:|:------------------:|
| PROD | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | -- |
</Table>
<Table>
| Lineage | Table-level | Column-level |
|:------:|:-----------:|:-------------:|
| ✅ | ✅ | ✅ |
</Table>
In this section, we provide guides and references to use the Snowflake connector.
Configure and schedule Snowflake metadata and profiler workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [Query Usage](#query-usage)
- [Data Profiler](#data-profiler)
- [Lineage](#lineage)
- [dbt Integration](#dbt-integration)
## Requirements
<InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
</InlineCallout>
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
custom Airflow plugins to handle the workflow deployment.
### Python Requirements
To run the Snowflake ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[snowflake]"
```
If you want to run the Usage Connector, you'll also need to install:
```bash
pip3 install "openmetadata-ingestion[snowflake-usage]"
```
To ingest basic metadata snowflake user must have the following priviledges:
- `USAGE` Privilege on Warehouse
- `USAGE` Privilege on Database
- `USAGE` Privilege on Schema
- `SELECT` Privilege on Tables
```sql
-- Create New Role
CREATE ROLE NEW_ROLE;
-- Create New User
CREATE USER NEW_USER DEFAULT_ROLE=NEW_ROLE PASSWORD='PASSWORD';
-- Grant role to user
GRANT ROLE NEW_ROLE TO USER NEW_USER;
-- Grant USAGE Privilege on Warehouse to New Role
GRANT USAGE ON WAREHOUSE WAREHOUSE_NAME TO ROLE NEW_ROLE;
-- Grant USAGE Privilege on Database to New Role
GRANT USAGE ON DATABASE TEST_DB TO ROLE NEW_ROLE;
-- Grant USAGE Privilege on required Schemas to New Role
GRANT USAGE ON SCHEMA TEST_SCHEMA TO ROLE NEW_ROLE;
-- Grant SELECT Privilege on required tables & views to New Role
GRANT SELECT ON ALL TABLES IN SCHEMA TEST_SCHEMA TO ROLE NEW_ROLE;
GRANT SELECT ON ALL VIEWS IN SCHEMA TEST_SCHEMA TO ROLE NEW_ROLE;
```
While running the usage workflow, Openmetadata fetches the query logs by querying `snowflake.account_usage.query_history` table. For this the snowflake user should be granted the `ACCOUNTADMIN` role or a role granted IMPORTED PRIVILEGES on the database `SNOWFLAKE`.
```sql
-- Grant IMPORTED PRIVILEGES on all Schemas of SNOWFLAKE DB to New Role
GRANT IMPORTED PRIVILEGES ON ALL SCHEMAS IN DATABASE SNOWFLAKE TO ROLE NEW_ROLE;
```
If ingesting tags, the user should also have permissions to query `snowflake.account_usage.tag_references`.For this the snowflake user should be granted the `ACCOUNTADMIN` role or a role granted IMPORTED PRIVILEGES on the database
```sql
-- Grant IMPORTED PRIVILEGES on all Schemas of SNOWFLAKE DB to New Role
GRANT IMPORTED PRIVILEGES ON ALL SCHEMAS IN DATABASE SNOWFLAKE TO ROLE NEW_ROLE;
```
You can find more information about the `account_usage` schema [here](https://docs.snowflake.com/en/sql-reference/account-usage.html).
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/snowflakeConnection.json)
you can find the structure to create a connection to Snowflake.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for Snowflake:
```yaml
source:
type: snowflake
serviceName: <service name>
serviceConnection:
config:
type: Snowflake
username: <username>
password: <password>
warehouse: <warehouse>
account: <account>
# database: <database>
includeTempTables: false
# hostPort: account.region.service.snowflakecomputing.com
# privateKey: |
# <privateKey>
# <...>
# snowflakePrivatekeyPassphrase: <passphrase>
# role: <role>
sourceConfig:
config:
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
```
#### Source Configuration - Service Connection
- **username**: Specify the User to connect to Snowflake. It should have enough privileges to read all the metadata.
- **password**: Password to connect to Snowflake.
- **account**: Enter the details for the Snowflake Account.
- **role**: Enter the details of the Snowflake Account Role. This is an optional detail.
- **warehouse**: Warehouse name.
- **database**: The database of the data source is an optional parameter, if you would like to restrict the metadata reading to a single database. If left blank, OpenMetadata ingestion attempts to scan all the databases.
- **privateKey**: Connection to Snowflake instance via Private Key instead of a Password.
- The multi-line key needs to be correctly formatted in YAML so a literal block scalar which retains new lines is recommended (`|`).
- **includeTempTables**: Optional configuration for ingestion of TRANSIENT and TEMPORARY tables, By default, it will skip the TRANSIENT and TEMPORARY tables.
- **snowflakePrivatekeyPassphrase**: Snowflake Passphrase Key used with and encrypted Private Key.
- **Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to Snowflake during the connection. These details must be added as Key-Value pairs.
- **Connection Arguments (Optional)**: Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Snowflake during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "sso_login_url"`
- In case you authenticate with SSO using an external browser popup, then add the `authenticator` details in the Connection Arguments as a Key-Value pair as follows: `"authenticator" : "externalbrowser"`
#### Source Configuration - Source Config
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceMetadataPipeline.json):
- `markDeletedTables`: To flag tables as soft-deleted if they are not present anymore in the source system.
- `includeTables`: true or false, to ingest table data. Default is true.
- `includeViews`: true or false, to ingest views definitions.
- `databaseFilterPattern`, `schemaFilterPattern`, `tableFilternPattern`: Note that the they support regex as include or exclude. E.g.,
```yaml
tableFilterPattern:
includes:
- users
- type_test
```
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
You can find the different implementation of the ingestion below.
<Collapse title="Configure SSO in the Ingestion Workflows">
### Openmetadata JWT Auth
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
```
### Auth0 SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Azure SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
```
### Custom OIDC SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### Google SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
```
### Okta SSO
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
```
### Amazon Cognito SSO
The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### OneLogin SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
### KeyCloak SSO
Which uses Custom OIDC for the ingestion
```yaml
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
```
</Collapse>
### 2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
```bash
metadata ingest -c <path-to-yaml>
```
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration,
you will be able to extract metadata from different sources.
## Query Usage
To ingest the Query Usage, the `serviceConnection` configuration will remain the same.
However, the `sourceConfig` is now modeled after this JSON Schema.
### 1. Define the YAML Config
This is a sample config for Snowflake Usage:
```yaml
source:
type: snowflake-usage
serviceName: "<service name>"
serviceConnection:
config:
type: Snowflake
username: <username>
password: <password>
warehouse: <warehouse>
account: <account>
# database: <database>
# hostPort: account.region.service.snowflakecomputing.com
# privateKey: <privateKey>
# snowflakePrivatekeyPassphrase: <passphrase>
# role: <role>
sourceConfig:
config:
# Number of days to look back
queryLogDuration: 7
# This is a directory that will be DELETED after the usage runs
stageFileLocation: <path to store the stage file>
# resultLimit: 1000
# If instead of getting the query logs from the database we want to pass a file with the queries
# queryLogFilePath: path-to-file
processor:
type: query-parser
config: {}
stage:
type: table-usage
config:
filename: "/tmp/snowflake_usage"
bulkSink:
type: metadata-usage
config:
filename: "/tmp/snowflake_usage"
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
```
#### Source Configuration - Service Connection
You can find all the definitions and types for the `serviceConnection` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/bigQueryConnection.json).
They are the same as metadata ingestion.
#### Source Configuration - Source Config
The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceQueryUsagePipeline.json).
- `queryLogDuration`: Configuration to tune how far we want to look back in query logs to process usage data.
- `resultLimit`: Configuration to set the limit for query logs
#### Processor, Stage and Bulk Sink
To specify where the staging files will be located.
Note that the location is a directory that will be cleaned at the end of the ingestion.
#### Workflow Configuration
The same as the metadata ingestion.
### 2. Run with the CLI
There is an extra requirement to run the Usage pipelines. You will need to install:
```bash
pip3 install --upgrade 'openmetadata-ingestion[snowflake-usage]'
```
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
```bash
metadata ingest -c <path-to-yaml>
```
## Data Profiler
The Data Profiler workflow will be using the `orm-profiler` processor.
While the `serviceConnection` will still be the same to reach the source system, the `sourceConfig` will be
updated from previous configurations.
### 1. Define the YAML Config
This is a sample config for the profiler:
```yaml
source:
type: snowflake
serviceName: "<service name>"
serviceConnection:
config:
type: Snowflake
username: <username>
password: <password>
warehouse: <warehouse>
account: <account>
# database: <database>
# hostPort: account.region.service.snowflakecomputing.com
# privateKey: <privateKey>
# snowflakePrivatekeyPassphrase: <passphrase>
# role: <role>
sourceConfig:
config:
type: Profiler
# generateSampleData: true
# profileSample: 85
# threadCount: 5 (default)
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <table fqn>
# profileSample: <number between 0 and 99> # default will be 100 if omitted
# profileQuery: <query to use for sampling data for the profiler>
# columnConfig:
# excludeColumns:
# - <column name>
# includeColumns:
# - columnName: <column name>
# - metrics:
# - MEAN
# - MEDIAN
# - ...
# partitionConfig:
# enablePartitioning: <set to true to use partitioning>
# partitionColumnName: <partition column name. Must be a timestamp or datetime/date field type>
# partitionInterval: <partition interval>
# partitionIntervalUnit: <YEAR, MONTH, DAY, HOUR>
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
```
#### Source Configuration
- You can find all the definitions and types for the `serviceConnection` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/snowflakeConnection.json).
- The `sourceConfig` is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
Note that the filter patterns support regex as includes or excludes. E.g.,
```yaml
tableFilterPattern:
includes:
- *users$
```
#### Processor
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
```yaml
processor:
type: orm-profiler
config:
tableConfig:
- fullyQualifiedName: <table fqn>
profileSample: <number between 0 and 99>
partitionConfig:
partitionField: <field to use as a partition field>
partitionQueryDuration: <for date/datetime partitioning based set the offset from today>
partitionValues: <values to uses as a predicate for the query>
profileQuery: <query to use for sampling data for the profiler>
columnConfig:
excludeColumns:
- <column name>
includeColumns:
- columnName: <column name>
- metrics:
- MEAN
- MEDIAN
- ...
```
`tableConfig` allows you to set up some configuration at the table level.
All the properties are optional. `metrics` should be one of the metrics listed [here](https://docs.open-metadata.org/openmetadata/ingestion/workflows/profiler/metrics)
#### Workflow Configuration
The same as the metadata ingestion.
### 2. Run with the CLI
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
```bash
metadata profile -c <path-to-yaml>
```
Note how instead of running `ingest`, we are using the `profile` command to select the Profiler workflow.
## Lineage
You can learn more about how to ingest lineage [here](/connectors/ingestion/workflows/lineage).
## dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage [here](/connectors/ingestion/workflows/dbt).