
* Added mark delete logic * Final test and optimization * After merge fixes * Added include tags for dash pipelines dbt * added docs and fixed test * Fixed py tests * Added UI changes for following newly added fields: - markDeletedDashboards - markDeletedMlModels - markDeletedPipelines - markDeletedTopics - includeTags * Fixed failing unit tests * updated json files of localization for other languages * Improved localization changes * added localization changes for other languages * Updated mark deleted desc * updated the ingestion fields descriptions in the ingestion form for UI * automated localization changes for other languages * updated descriptions for includeTags field for dbtPipeline and databaseServiceMetadataPipeline json * fixed issue where includeTags field was being sent in the dbtConfigSource * Added flow to input taxonomy while adding BigQuery service. --------- Co-authored-by: Aniket Katkar <aniketkatkar97@gmail.com>
8.4 KiB
title | slug |
---|---|
Run Redpanda Connector using Airflow SDK | /connectors/messaging/redpanda/airflow |
Run Redpanda using the Airflow SDK
In this section, we provide guides and references to use the Redpanda connector.
Configure and schedule Redpanda metadata and profiler workflows from the OpenMetadata UI:
Requirements
To deploy OpenMetadata, check the Deployment guides.To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the Redpanda ingestion, you will need to install:
pip3 install "openmetadata-ingestion[redpanda]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Redpanda.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for Redpanda:
source:
type: redpanda
serviceName: local_redpanda
serviceConnection:
config:
type: Redpanda
bootstrapServers: localhost:9092
schemaRegistryURL: http://localhost:8081 # Needs to be a URI
consumerConfig: {}
schemaRegistryConfig: {}
sourceConfig:
config:
type: MessagingMetadata
# markDeletedTopics: true
topicFilterPattern:
excludes:
- _confluent.*
# includes:
# - topic1
generateSampleData: true
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
Source Configuration - Service Connection
- bootstrapServers: Redpanda bootstrap servers. Add them in comma separated values e.g.: host1:9092,host2:9092.
- schemaRegistryURL: Redpanda Schema Registry URL. URI format.
- consumerConfig: Redpanda Consumer Config.
- schemaRegistryConfig: Redpanda Schema Registry Config.
To ingest the topic schema schemaRegistryURL
must be passed
Source Configuration - Source Config
The sourceConfig is defined here:
generateSampleData
: Option to turn on/off generating sample data during metadata extraction.topicFilterPattern
: Note that thetopicFilterPattern
supports regex as include or exclude. E.g.,markDeletedTopics
: Set the Mark Deleted Topics toggle to flag topics as soft-deleted if they are not present anymore in the source system.
topicFilterPattern:
includes:
- users
- type_test
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.
Openmetadata JWT Auth
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
Auth0 SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Azure SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
Custom OIDC SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Google SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
Okta SSO
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
Amazon Cognito SSO
The ingestion can be configured by Enabling JWT Tokens
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
OneLogin SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
KeyCloak SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
2. Prepare the Ingestion DAG
Create a Python file in your Airflow DAGs directory with the following contents:
import pathlib
import yaml
from datetime import timedelta
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
config = """
<your YAML configuration>
"""
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.