mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-10-31 02:29:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			146 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #  Copyright 2021 Collate
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #  http://www.apache.org/licenses/LICENSE-2.0
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| """
 | |
| Databricks lineage utils tests
 | |
| """
 | |
| 
 | |
| import json
 | |
| from datetime import datetime
 | |
| from pathlib import Path
 | |
| from unittest import TestCase
 | |
| from unittest.mock import patch
 | |
| 
 | |
| from metadata.generated.schema.metadataIngestion.workflow import (
 | |
|     OpenMetadataWorkflowConfig,
 | |
| )
 | |
| from metadata.generated.schema.type.tableQuery import TableQuery
 | |
| from metadata.ingestion.source.database.databricks_lineage import (
 | |
|     DatabricksLineageSource,
 | |
| )
 | |
| from metadata.utils.ansi import print_ansi_encoded_string
 | |
| 
 | |
| mock_file_path = Path(__file__).parent / "resources/datasets/databricks_dataset.json"
 | |
| with open(mock_file_path, encoding="utf-8") as file:
 | |
|     mock_data: dict = json.load(file)
 | |
| 
 | |
| 
 | |
| EXPECTED_DATABRICKS_DETAILS = [
 | |
|     TableQuery(
 | |
|         query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nSHOW TABLES IN `test`',
 | |
|         userName="vijay@getcollate.io",
 | |
|         startTime="1665566128192",
 | |
|         endTime="1665566128329",
 | |
|         analysisDate=datetime.now(),
 | |
|         aborted=None,
 | |
|         serviceName="local_databricks1",
 | |
|         databaseSchema=None,
 | |
|     ),
 | |
|     TableQuery(
 | |
|         query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nSHOW TABLES IN `test`',
 | |
|         userName="vijay@getcollate.io",
 | |
|         startTime="1665566127416",
 | |
|         endTime="1665566127568",
 | |
|         analysisDate=datetime.now(),
 | |
|         aborted=None,
 | |
|         serviceName="local_databricks1",
 | |
|         databaseSchema=None,
 | |
|     ),
 | |
|     TableQuery(
 | |
|         query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nSHOW TABLES IN `default`',
 | |
|         userName="vijay@getcollate.io",
 | |
|         startTime="1665566125414",
 | |
|         endTime="1665566125579",
 | |
|         analysisDate=datetime.now(),
 | |
|         aborted=None,
 | |
|         serviceName="local_databricks1",
 | |
|         databaseSchema=None,
 | |
|     ),
 | |
|     TableQuery(
 | |
|         query=' /* {"app": "OpenMetadata", "version": "0.13.0.dev0"} */\nDESCRIBE default.view3',
 | |
|         userName="vijay@getcollate.io",
 | |
|         startTime="1665566124428",
 | |
|         endTime="1665566124730",
 | |
|         analysisDate=datetime.now(),
 | |
|         aborted=None,
 | |
|         serviceName="local_databricks1",
 | |
|         databaseSchema=None,
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| mock_databricks_config = {
 | |
|     "source": {
 | |
|         "type": "databricks-lineage",
 | |
|         "serviceName": "local_databricks1",
 | |
|         "serviceConnection": {
 | |
|             "config": {
 | |
|                 "token": "random_token",
 | |
|                 "hostPort": "localhost:443",
 | |
|                 "connectionArguments": {
 | |
|                     "http_path": "sql/1.0/endpoints/path",
 | |
|                 },
 | |
|             }
 | |
|         },
 | |
|         "sourceConfig": {
 | |
|             "config": {
 | |
|                 "type": "DatabaseLineage",
 | |
|                 "queryLogDuration": 1,
 | |
|                 "resultLimit": 10000,
 | |
|             }
 | |
|         },
 | |
|     },
 | |
|     "sink": {"type": "metadata-rest", "config": {}},
 | |
|     "workflowConfig": {
 | |
|         "openMetadataServerConfig": {
 | |
|             "hostPort": "http://localhost:8585/api",
 | |
|             "authProvider": "openmetadata",
 | |
|             "securityConfig": {
 | |
|                 "jwtToken": "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGc"
 | |
|                 "iOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE"
 | |
|                 "2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXB"
 | |
|                 "iEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fN"
 | |
|                 "r3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3u"
 | |
|                 "d-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
 | |
|             },
 | |
|         }
 | |
|     },
 | |
| }
 | |
| 
 | |
| 
 | |
| class DatabricksLineageTests(TestCase):
 | |
|     """
 | |
|     Implements the necessary methods to extract
 | |
|     Databricks lineage test
 | |
|     """
 | |
| 
 | |
|     def __init__(self, methodName) -> None:
 | |
|         super().__init__(methodName)
 | |
|         print_ansi_encoded_string(message="init")
 | |
|         config = OpenMetadataWorkflowConfig.parse_obj(mock_databricks_config)
 | |
| 
 | |
|         self.databricks = DatabricksLineageSource.create(
 | |
|             mock_databricks_config["source"],
 | |
|             config.workflowConfig.openMetadataServerConfig,
 | |
|         )
 | |
| 
 | |
|     @patch("metadata.clients.databricks_client.DatabricksClient.list_query_history")
 | |
|     def test_get_table_query(self, list_query_history):
 | |
|         list_query_history.return_value = mock_data
 | |
|         results = self.databricks.get_table_query()
 | |
|         query_list = []
 | |
|         for result in results:
 | |
|             if isinstance(result, TableQuery):
 | |
|                 query_list.append(result)
 | |
|         for _, (expected, original) in enumerate(
 | |
|             zip(EXPECTED_DATABRICKS_DETAILS, query_list)
 | |
|         ):
 | |
|             expected.analysisDate = original.analysisDate = datetime.now()
 | |
|             self.assertEqual(expected, original)
 | 
