11 KiB
title | slug |
---|---|
Run Tableau Connector using the CLI | /connectors/dashboard/tableau/cli |
Run Tableau using the metadata CLI
In this section, we provide guides and references to use the Tableau connector.
Configure and schedule Tableau metadata and profiler workflows from the OpenMetadata UI:
Requirements
To deploy OpenMetadata, check the Deployment guides.To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the Tableau ingestion, you will need to install:
pip3 install "openmetadata-ingestion[tableau]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Tableau.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for Tableau:
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
username: username
password: password
env: tableau_prod
hostPort: http://localhost
siteName: site_name
siteUrl: site_url
apiVersion: api_version
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
Example Source Configurations for default and non-default tableau sites
1. Sample config for default tableau site
For a default tableau site siteName
and siteUrl
fields should be kept as empty strings as shown in the below config.
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
username: username
password: password
env: tableau_prod
hostPort: http://localhost
siteName: ""
siteUrl: ""
apiVersion: api_version
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
1. Sample config for non-default tableau site
For a non-default tableau site siteName
and siteUrl
fields are required.
If https://xxx.tableau.com/#/site/sitename/home
represents the homepage url for your tableau site, the sitename
from the url should be entered in the siteName
and siteUrl
fields in the config below.
source:
type: tableau
serviceName: local_tableau
serviceConnection:
config:
type: Tableau
username: username
password: password
env: tableau_prod
hostPort: http://localhost
siteName: openmetadata
siteUrl: openmetadata
apiVersion: api_version
# If not setting user and password
# personalAccessTokenName: personal_access_token_name
# personalAccessTokenSecret: personal_access_token_secret
sourceConfig:
config:
type: DashboardMetadata
# dbServiceNames:
# - service1
# - service2
# dashboardFilterPattern:
# includes:
# - dashboard1
# - dashboard2
# excludes:
# - dashboard3
# - dashboard4
# chartFilterPattern:
# includes:
# - chart1
# - chart2
# excludes:
# - chart3
# - chart4
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
Source Configuration - Service Connection
- hostPort: URL to the Tableau instance.
- username: Specify the User to connect to Tableau. It should have enough privileges to read all the metadata.
- password: Password for Tableau.
- apiVersion: Tableau API version.
- siteName: Tableau Site Name. To be kept empty if you are using the default Tableau site
- siteUrl: Tableau Site Url. To be kept empty if you are using the default Tableau site
- personalAccessTokenName: Access token. To be used if not logging in with user/password.
- personalAccessTokenSecret: Access token Secret. To be used if not logging in with user/password.
- env: Tableau Environment.
Source Configuration - Source Config
The sourceConfig
is defined here:
dbServiceName
: Database Service Name for the creation of lineage, if the source supports it.dashboardFilterPattern
andchartFilterPattern
: Note that thedashboardFilterPattern
andchartFilterPattern
both support regex as include or exclude. E.g.,
dashboardFilterPattern:
includes:
- users
- type_test
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.
Openmetadata JWT Auth
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
Auth0 SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Azure SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
Custom OIDC SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Google SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
Okta SSO
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
Amazon Cognito SSO
The ingestion can be configured by Enabling JWT Tokens
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
OneLogin SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
KeyCloak SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
metadata ingest -c <path-to-yaml>
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.