11 KiB
title | slug |
---|---|
Run DeltaLake Connector using the CLI | /connectors/database/deltalake/cli |
Run Deltalake using the metadata CLI
In this section, we provide guides and references to use the Deltalake connector.
Configure and schedule Deltalake metadata and profiler workflows from the OpenMetadata UI:
Requirements
To deploy OpenMetadata, check the Deployment guides.To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the Deltalake ingestion, you will need to install:
pip3 install "openmetadata-ingestion[deltalake]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Deltalake.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for Deltalake:
source:
type: deltalake
serviceName: "<service name>"
serviceConnection:
config:
type: DeltaLake
metastoreConnection:
# Pick only of the three
metastoreHostPort: "<metastore host port>"
# metastoreDb: jdbc:mysql://localhost:3306/demo_hive
# metastoreFilePath: "<path_to_metastore>/metastore_db"
appName: MyApp
sourceConfig:
config:
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
# For dbt, choose one of Cloud, Local, HTTP, S3 or GCS configurations
# dbtConfigSource:
# # For cloud
# dbtCloudAuthToken: token
# dbtCloudAccountId: ID
# # For Local
# dbtCatalogFilePath: path-to-catalog.json
# dbtManifestFilePath: path-to-manifest.json
# # For HTTP
# dbtCatalogHttpPath: http://path-to-catalog.json
# dbtManifestHttpPath: http://path-to-manifest.json
# # For S3
# dbtSecurityConfig: # These are modeled after all AWS credentials
# awsAccessKeyId: KEY
# awsSecretAccessKey: SECRET
# awsRegion: us-east-2
# dbtPrefixConfig:
# dbtBucketName: bucket
# dbtObjectPrefix: "dbt/"
# # For GCS
# dbtSecurityConfig: # These are modeled after all GCS credentials
# type: My Type
# projectId: project ID
# privateKeyId: us-east-2
# privateKey: |
# -----BEGIN PRIVATE KEY-----
# Super secret key
# -----END PRIVATE KEY-----
# clientEmail: client@mail.com
# clientId: 1234
# authUri: https://accounts.google.com/o/oauth2/auth (default)
# tokenUri: https://oauth2.googleapis.com/token (default)
# authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs (default)
# clientX509CertUrl: https://cert.url (URI)
# dbtPrefixConfig:
# dbtBucketName: bucket
# dbtObjectPrefix: "dbt/"
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
Source Configuration - Service Connection
- Metastore Host Port: Enter the Host & Port of Hive Metastore Service to configure the Spark Session. Either
of
metastoreHostPort
,metastoreDb
ormetastoreFilePath
is required. - Metastore File Path: Enter the file path to local Metastore in case Spark cluster is running locally. Either
of
metastoreHostPort
,metastoreDb
ormetastoreFilePath
is required. - Metastore DB: The JDBC connection to the underlying Hive metastore DB. Either
of
metastoreHostPort
,metastoreDb
ormetastoreFilePath
is required. - appName (Optional): Enter the app name of spark session.
- Connection Arguments (Optional): Key-Value pairs that will be used to pass extra
config
elements to the Spark Session builder.
We are internally running with pyspark
3.X and delta-lake
2.0.0. This means that we need to consider Spark
configuration options for 3.X.
Metastore Host Port
When connecting to an External Metastore passing the parameter Metastore Host Port
, we will be preparing a Spark Session with the configuration
.config("hive.metastore.uris", "thrift://{connection.metastoreHostPort}")
Then, we will be using the catalog
functions from the Spark Session to pick up the metadata exposed by the Hive Metastore.
Metastore File Path
If instead we use a local file path that contains the metastore information (e.g., for local testing with the default metastore_db
directory), we will set
.config("spark.driver.extraJavaOptions", "-Dderby.system.home={connection.metastoreFilePath}")
To update the Derby
information. More information about this in a great SO thread.
- You can find all supported configurations here
- If you need further information regarding the Hive metastore, you can find it here, and in The Internals of Spark SQL book.
Source Configuration - Source Config
The sourceConfig
is defined here:
markDeletedTables
: To flag tables as soft-deleted if they are not present anymore in the source system.includeTables
: true or false, to ingest table data. Default is true.includeViews
: true or false, to ingest views definitions.databaseFilterPattern
,schemaFilterPattern
,tableFilternPattern
: Note that the they support regex as include or exclude. E.g.,
tableFilterPattern:
includes:
- users
- type_test
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.
Openmetadata JWT Auth
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
Auth0 SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Azure SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
Custom OIDC SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Google SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
Okta SSO
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
Amazon Cognito SSO
The ingestion can be configured by Enabling JWT Tokens
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
OneLogin SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
KeyCloak SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
metadata ingest -c <path-to-yaml>
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.
dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage here.