
* Fix: atlas test connection * Fix: docs changes * Fix: docs changes * Fix: python checkstyle * Fix: python test
6.7 KiB
title | slug |
---|---|
Run Atlas Connector using the CLI | /connectors/metadata/atlas/cli |
Run Atlas using the metadata CLI
In this section, we provide guides and references to use the Atlas connector.
Configure and schedule Atlas metadata and profiler workflows from the OpenMetadata UI:
Requirements
Before this, you must ingest the database / messaging service you want to get metadata for. For more details click here
To deploy OpenMetadata, check the Deployment guides.To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the Atlas ingestion, you will need to install:
pip3 install "openmetadata-ingestion[atlas]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Atlas.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for Atlas:
source:
type: Atlas
serviceName: local_atlas
serviceConnection:
config:
type: Atlas
hostPort: http://localhost:10000
username: username
password: password
databaseServiceName: ["local_hive"] # pass database service here
messagingServiceName: [] # pass messaging service here
entity_type: Table # this entity must be present on atlas
sourceConfig:
config:
type: DatabaseMetadata
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: "<OpenMetadata host and port>"
authProvider: "<OpenMetadata auth provider>"
Source Configuration - Service Connection
- Host and Port: Host and port of the Atlas service.
- Username: username to connect to the Atlas. This user should have privileges to read all the metadata in Atlas.
- Password: password to connect to the Atlas.
- databaseServiceName: source database of the data source(Database service that you created from UI. example- local_hive)
- messagingServiceName: messaging service source of the data source.
- entity_type: Name of the entity type in Atlas.
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
We support different security providers. You can find their definitions here. You can find the different implementation of the ingestion below.
Openmetadata JWT Auth
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: openmetadata
securityConfig:
jwtToken: '{bot_jwt_token}'
Auth0 SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Azure SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: azure
securityConfig:
clientSecret: '{your_client_secret}'
authority: '{your_authority_url}'
clientId: '{your_client_id}'
scopes:
- your_scopes
Custom OIDC SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
Google SSO
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: google
securityConfig:
secretKey: '{path-to-json-creds}'
Okta SSO
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: okta
securityConfig:
clientId: "{CLIENT_ID - SPA APP}"
orgURL: "{ISSUER_URL}/v1/token"
privateKey: "{public/private keypair}"
email: "{email}"
scopes:
- token
Amazon Cognito SSO
The ingestion can be configured by Enabling JWT Tokens
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: auth0
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
OneLogin SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
KeyCloak SSO
Which uses Custom OIDC for the ingestion
workflowConfig:
openMetadataServerConfig:
hostPort: 'http://localhost:8585/api'
authProvider: custom-oidc
securityConfig:
clientId: '{your_client_id}'
secretKey: '{your_client_secret}'
domain: '{your_domain}'
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
metadata ingest -c <path-to-yaml>
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.