mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-11-04 04:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			200 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Installation and deployment instructions (using Postgres as example)
 | 
						|
 | 
						|
Below are the instructions for connecting a Postgress server. The installation steps should be the same for connecting all kinds of servers. Different servers would require different configurations in the .yaml or DAG files. See https://docs.open-metadata.org/integrations/connectors for your configuration.
 | 
						|
 | 
						|
# Goal: To run Postgres metadata ingestion and quality tests with OpenMetadata using Airflow scheduler
 | 
						|
 | 
						|
Note: This procedure does not support Windows, because Windows does not implement "signal.SIGALRM". **It is highly recommended to use WSL 2 if you are on Windows**.
 | 
						|
 | 
						|
## Requirements:
 | 
						|
See https://docs.open-metadata.org/overview/run-openmetadata-with-prefect "Requirements" section
 | 
						|
 | 
						|
## Installation:
 | 
						|
1. Clone this git hub repo:
 | 
						|
`git clone https://github.com/open-metadata/OpenMetadata.git`
 | 
						|
 | 
						|
2. Cd to ~/.../openmetadata/docker/metadata
 | 
						|
 | 
						|
3. Start the OpenMetadata containers. This will allow you run OpenMetadata in Docker:
 | 
						|
`docker compose up -d`
 | 
						|
- To check the status of services, run `docker compose ps` 
 | 
						|
- To access the UI: http://localhost:8585
 | 
						|
 | 
						|
4. Install the OpenMetadata ingestion package.
 | 
						|
- (optional but highly recommended): Before installing this package, it is recommended to create and activate a virtual environment. To do this, run:
 | 
						|
`python -m venv env` and `source env/bin/activate`
 | 
						|
 | 
						|
- To install the OpenMetadata ingestion package:
 | 
						|
`pip install --upgrade "openmetadata-ingestion[docker]==0.10.3"` (specify the release version to ensure compatibility)
 | 
						|
 | 
						|
5. Install Airflow:
 | 
						|
- 5A: Install Airflow Lineage Backend: `pip3 install "openmetadata-ingestion[airflow-container]"==0.10.3`
 | 
						|
- 5B: Install Airflow postgres connector module: `pip3 install "openmetadata-ingestion[postgres]"==0.10.3`
 | 
						|
- 5C: Install Airflow APIs: `pip3 install "openmetadata-airflow-managed-apis"==0.10.3`
 | 
						|
- 5D: Install necessary Airflow plugins:
 | 
						|
    - 1) Download the latest openmetadata-airflow-apis-plugins release from https://github.com/open-metadata/OpenMetadata/releases
 | 
						|
    - 2) Untar it under your {AIRFLOW_HOME} directory (usually c/Users/Yourname/airflow). This will create and setup a plugins directory under {AIRFLOW_HOME} .
 | 
						|
    - 3) `cp -r {AIRFLOW_HOME}/plugins/dag_templates {AIRFLOW_HOME}`
 | 
						|
    - 4) `mkdir -p {AIRFLOW_HOME}/dag_generated_configs`
 | 
						|
    - 5) (re)start the airflow webserver and scheduler
 | 
						|
 | 
						|
6. Configure Airflow:
 | 
						|
- 6A: configure airflow.cfg in your AIRFLOW_HOME directory. Check and make all the folder directories point to the right places. For instance, dags_folder = YOUR_AIRFLOW_HOME/dags
 | 
						|
- 6B: configure openmetadata.yaml and update the airflowConfiguration section. See: https://docs.open-metadata.org/integrations/airflow/configure-airflow-in-the-openmetadata-server
 | 
						|
 | 
						|
## To run a metadata ingestion workflow with Airflow ingestion DAGs on Postgres data:
 | 
						|
 | 
						|
1. Prepare the Ingestion DAG:
 | 
						|
To see a more complete tutorial on ingestion DAG, see https://docs.open-metadata.org/integrations/connectors/postgres/run-postgres-connector-with-the-airflow-sdk
 | 
						|
To be brief, below is my own DAG. Copy & Paste the following into a python file (postgres_demo.py):
 | 
						|
 | 
						|
```
 | 
						|
import pathlib
 | 
						|
import json
 | 
						|
from datetime import timedelta
 | 
						|
from airflow import DAG
 | 
						|
 | 
						|
try:
 | 
						|
    from airflow.operators.python import PythonOperator
 | 
						|
except ModuleNotFoundError:
 | 
						|
    from airflow.operators.python_operator import PythonOperator
 | 
						|
 | 
						|
from metadata.config.common import load_config_file
 | 
						|
from metadata.ingestion.api.workflow import Workflow
 | 
						|
from airflow.utils.dates import days_ago
 | 
						|
 | 
						|
default_args = {
 | 
						|
    "owner": "user_name",
 | 
						|
    "email": ["username@org.com"],
 | 
						|
    "email_on_failure": False,
 | 
						|
    "retries": 3,
 | 
						|
    "retry_delay": timedelta(minutes=5),
 | 
						|
    "execution_timeout": timedelta(minutes=60)
 | 
						|
}
 | 
						|
 | 
						|
config = """
 | 
						|
{
 | 
						|
    "source":{
 | 
						|
        "type": "postgres",
 | 
						|
        "serviceName": "postgres_demo",
 | 
						|
        "serviceConnection": {
 | 
						|
            "config": {
 | 
						|
                "type": "Postgres",
 | 
						|
                "username": "postgres", (change to your username)
 | 
						|
                "password": "postgres", (change to your password)
 | 
						|
                "hostPort": "192.168.1.55:5432", (change to your hostPort)
 | 
						|
                "database": "surveillance_hub" (change to your database)
 | 
						|
            }
 | 
						|
        },
 | 
						|
        "sourceConfig":{
 | 
						|
            "config": { (all of the following can switch to true or false)
 | 
						|
                "enableDataProfiler": "true" or "false", 
 | 
						|
                "markDeletedTables": "true" or "false",
 | 
						|
                "includeTables": "true" or "false",
 | 
						|
                "includeViews": "true" or "false",
 | 
						|
                "generateSampleData": "true" or "false" 
 | 
						|
            }
 | 
						|
        }
 | 
						|
    },      
 | 
						|
    "sink":{
 | 
						|
        "type": "metadata-rest",
 | 
						|
        "config": {}
 | 
						|
    },   
 | 
						|
    "workflowConfig": {
 | 
						|
        "openMetadataServerConfig": {
 | 
						|
            "hostPort": "http://localhost:8585/api",
 | 
						|
            "authProvider": "no-auth"
 | 
						|
        }
 | 
						|
    }
 | 
						|
        
 | 
						|
        
 | 
						|
}
 | 
						|
"""
 | 
						|
 | 
						|
def metadata_ingestion_workflow():
 | 
						|
    workflow_config = json.loads(config)
 | 
						|
    workflow = Workflow.create(workflow_config)
 | 
						|
    workflow.execute()
 | 
						|
    workflow.raise_from_status()
 | 
						|
    workflow.print_status()
 | 
						|
    workflow.stop()
 | 
						|
 | 
						|
 | 
						|
with DAG(
 | 
						|
    "sample_data",
 | 
						|
    default_args=default_args,
 | 
						|
    description="An example DAG which runs a OpenMetadata ingestion workflow",
 | 
						|
    start_date=days_ago(1),
 | 
						|
    is_paused_upon_creation=False,
 | 
						|
    schedule_interval='*/5 * * * *', 
 | 
						|
    catchup=False,
 | 
						|
) as dag:
 | 
						|
    ingest_task = PythonOperator(
 | 
						|
        task_id="ingest_using_recipe",
 | 
						|
        python_callable=metadata_ingestion_workflow,
 | 
						|
    )
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    metadata_ingestion_workflow()
 | 
						|
```
 | 
						|
 | 
						|
2. Run the DAG:
 | 
						|
`
 | 
						|
python postgres_demo.py
 | 
						|
`
 | 
						|
 | 
						|
- Alternatively, we could run without Airflow SDK and with OpenMetadata's own methods. Run `metadata ingest -c /Your_Path_To_Json/.json`
 | 
						|
The json configuration is exactly the same as the json configuration in the DAG.
 | 
						|
- Or, we could also run it with `metadata ingest -c /Your_Path_To_Yaml/.yaml`
 | 
						|
The yaml configuration would be the exact same except without the curly brackets and the double quotes.
 | 
						|
 | 
						|
## To run a profiler workflow on Postgres data
 | 
						|
1. Prepare the DAG OR configure the yaml/json:
 | 
						|
- To configure the quality tests in json/yaml, see https://docs.open-metadata.org/data-quality/data-quality-overview/tests
 | 
						|
- To prepare the DAG, see https://github.com/open-metadata/OpenMetadata/tree/0.10.3-release/data-quality/data-quality-overview
 | 
						|
 | 
						|
Example yaml I was using:
 | 
						|
```
 | 
						|
source:
 | 
						|
  type: postgres
 | 
						|
  serviceName: your_service_name
 | 
						|
  serviceConnection:
 | 
						|
    config:
 | 
						|
      type: Postgres
 | 
						|
      username: your_username
 | 
						|
      password: your_password
 | 
						|
      hostPort: 
 | 
						|
      database: your_database  
 | 
						|
  sourceConfig:
 | 
						|
    config:
 | 
						|
      type: Profiler
 | 
						|
 | 
						|
processor:
 | 
						|
  type: orm-profiler
 | 
						|
  config:
 | 
						|
    test_suite:
 | 
						|
      name: demo_test
 | 
						|
      tests:
 | 
						|
        - table: your_table_name (FQN)
 | 
						|
          column_tests:
 | 
						|
            - columnName: id
 | 
						|
              testCase:
 | 
						|
                columnTestType: columnValuesToBeBetween
 | 
						|
                config:
 | 
						|
                  minValue: 0
 | 
						|
                  maxValue: 10
 | 
						|
sink:
 | 
						|
  type: metadata-rest
 | 
						|
  config: {}
 | 
						|
workflowConfig:
 | 
						|
  openMetadataServerConfig:
 | 
						|
    hostPort: http://localhost:8585/api
 | 
						|
    authProvider: no-auth
 | 
						|
```
 | 
						|
Note that the table name must be FQN and match exactly with the table path on the OpenMetadata UI.
 | 
						|
 | 
						|
2. Run it with 
 | 
						|
`metadata profile -c /path_to_yaml/.yaml`
 | 
						|
 | 
						|
Make sure to refresh the OpenMetadata UI and click on the Data Quality tab to see the results.
 |