mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-10-31 10:39:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			314 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			314 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Run Kafka Connector using Airflow SDK
 | |
| slug: /connectors/messaging/kafka/airflow
 | |
| ---
 | |
| 
 | |
| # Run Kafka using the Airflow SDK
 | |
| 
 | |
| In this section, we provide guides and references to use the Kafka connector.
 | |
| 
 | |
| Configure and schedule Kafka metadata and profiler workflows from the OpenMetadata UI:
 | |
| - [Requirements](#requirements)
 | |
| - [Metadata Ingestion](#metadata-ingestion)
 | |
| 
 | |
| ## Requirements
 | |
| 
 | |
| <InlineCallout color="violet-70" icon="description" bold="OpenMetadata 0.12 or later" href="/deployment">
 | |
| To deploy OpenMetadata, check the <a href="/deployment">Deployment</a> guides.
 | |
| </InlineCallout>
 | |
| 
 | |
| To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with
 | |
| custom Airflow plugins to handle the workflow deployment.
 | |
| 
 | |
| ### Python Requirements
 | |
| 
 | |
| To run the Kafka ingestion, you will need to install:
 | |
| 
 | |
| ```bash
 | |
| pip3 install "openmetadata-ingestion[kafka]"
 | |
| ```
 | |
| 
 | |
| ## Metadata Ingestion
 | |
| 
 | |
| All connectors are defined as JSON Schemas.
 | |
| [Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/messaging/kafkaConnection.json)
 | |
| you can find the structure to create a connection to Kafka.
 | |
| 
 | |
| In order to create and run a Metadata Ingestion workflow, we will follow
 | |
| the steps to create a YAML configuration able to connect to the source,
 | |
| process the Entities if needed, and reach the OpenMetadata server.
 | |
| 
 | |
| The workflow is modeled around the following
 | |
| [JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
 | |
| 
 | |
| ### 1. Define the YAML Config
 | |
| 
 | |
| This is a sample config for Kafka:
 | |
| 
 | |
| ```yaml
 | |
| source:
 | |
|   type: kafka
 | |
|   serviceName: local_kafka
 | |
|   serviceConnection:
 | |
|     config:
 | |
|       type: Kafka
 | |
|       bootstrapServers: localhost:9092
 | |
|       schemaRegistryURL: http://localhost:8081  # Needs to be a URI
 | |
|       consumerConfig: {}
 | |
|       schemaRegistryConfig: {}
 | |
|   sourceConfig:
 | |
|     config:
 | |
|       type: MessagingMetadata
 | |
|       topicFilterPattern:
 | |
|         excludes:
 | |
|           - _confluent.*
 | |
|         # includes:
 | |
|         #   - topic1
 | |
|       generateSampleData: true
 | |
| sink:
 | |
|   type: metadata-rest
 | |
|   config: {}
 | |
| workflowConfig:
 | |
|   # loggerLevel: DEBUG  # DEBUG, INFO, WARN or ERROR
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: <OpenMetadata host and port>
 | |
|     authProvider: <OpenMetadata auth provider>
 | |
| 
 | |
| ```
 | |
| 
 | |
| #### Source Configuration - Service Connection
 | |
| 
 | |
| - **bootstrapServers**: Kafka bootstrap servers. Add them in comma separated values ex: host1:9092,host2:9092.
 | |
| - **schemaRegistryURL**: Confluent Kafka Schema Registry URL. URI format.
 | |
| - **consumerConfig**: Confluent Kafka Consumer Config.
 | |
| - **schemaRegistryConfig**:Confluent Kafka Schema Registry Config.
 | |
| 
 | |
| 
 | |
| <Note>
 | |
| 
 | |
| To ingest the topic schema `schemaRegistryURL` must be passed
 | |
| 
 | |
| </Note>
 | |
| 
 | |
| #### Source Configuration - Source Config
 | |
| 
 | |
| The sourceConfig is defined [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/messagingServiceMetadataPipeline.json):
 | |
| 
 | |
| - `generateSampleData`: Option to turn on/off generating sample data during metadata extraction.
 | |
| - `topicFilterPattern`: Note that the `topicFilterPattern` supports regex as include or exclude. E.g.,
 | |
| 
 | |
| ```yaml
 | |
| topicFilterPattern:
 | |
|   includes:
 | |
|     - users
 | |
|     - type_test
 | |
| ```
 | |
| 
 | |
| #### Sink Configuration
 | |
| 
 | |
| To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
 | |
| 
 | |
| #### Workflow Configuration
 | |
| 
 | |
| The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
 | |
| 
 | |
| For a simple, local installation using our docker containers, this looks like:
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: openmetadata
 | |
|     securityConfig:
 | |
|       jwtToken: '{bot_jwt_token}'
 | |
| ```
 | |
| 
 | |
| We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
 | |
| You can find the different implementation of the ingestion below.
 | |
| 
 | |
| <Collapse title="Configure SSO in the Ingestion Workflows">
 | |
| 
 | |
| ### Openmetadata JWT Auth
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: openmetadata
 | |
|     securityConfig:
 | |
|       jwtToken: '{bot_jwt_token}'
 | |
| ```
 | |
| 
 | |
| ### Auth0 SSO
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: auth0
 | |
|     securityConfig:
 | |
|       clientId: '{your_client_id}'
 | |
|       secretKey: '{your_client_secret}'
 | |
|       domain: '{your_domain}'
 | |
| ```
 | |
| 
 | |
| ### Azure SSO
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: azure
 | |
|     securityConfig:
 | |
|       clientSecret: '{your_client_secret}'
 | |
|       authority: '{your_authority_url}'
 | |
|       clientId: '{your_client_id}'
 | |
|       scopes:
 | |
|         - your_scopes
 | |
| ```
 | |
| 
 | |
| ### Custom OIDC SSO
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: custom-oidc
 | |
|     securityConfig:
 | |
|       clientId: '{your_client_id}'
 | |
|       secretKey: '{your_client_secret}'
 | |
|       domain: '{your_domain}'
 | |
| ```
 | |
| 
 | |
| ### Google SSO
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: google
 | |
|     securityConfig:
 | |
|       secretKey: '{path-to-json-creds}'
 | |
| ```
 | |
| 
 | |
| ### Okta SSO
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: http://localhost:8585/api
 | |
|     authProvider: okta
 | |
|     securityConfig:
 | |
|       clientId: "{CLIENT_ID - SPA APP}"
 | |
|       orgURL: "{ISSUER_URL}/v1/token"
 | |
|       privateKey: "{public/private keypair}"
 | |
|       email: "{email}"
 | |
|       scopes:
 | |
|         - token
 | |
| ```
 | |
| 
 | |
| ### Amazon Cognito SSO
 | |
| 
 | |
| The ingestion can be configured by [Enabling JWT Tokens](https://docs.open-metadata.org/deployment/security/enable-jwt-tokens)
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: auth0
 | |
|     securityConfig:
 | |
|       clientId: '{your_client_id}'
 | |
|       secretKey: '{your_client_secret}'
 | |
|       domain: '{your_domain}'
 | |
| ```
 | |
| 
 | |
| ### OneLogin SSO
 | |
| 
 | |
| Which uses Custom OIDC for the ingestion
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: custom-oidc
 | |
|     securityConfig:
 | |
|       clientId: '{your_client_id}'
 | |
|       secretKey: '{your_client_secret}'
 | |
|       domain: '{your_domain}'
 | |
| ```
 | |
| 
 | |
| ### KeyCloak SSO
 | |
| 
 | |
| Which uses Custom OIDC for the ingestion
 | |
| 
 | |
| ```yaml
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: 'http://localhost:8585/api'
 | |
|     authProvider: custom-oidc
 | |
|     securityConfig:
 | |
|       clientId: '{your_client_id}'
 | |
|       secretKey: '{your_client_secret}'
 | |
|       domain: '{your_domain}'
 | |
| ```
 | |
| 
 | |
| </Collapse>
 | |
| 
 | |
| ## 2. Prepare the Ingestion DAG
 | |
| 
 | |
| Create a Python file in your Airflow DAGs directory with the following contents:
 | |
| 
 | |
| ```python
 | |
| import pathlib
 | |
| import yaml
 | |
| from datetime import timedelta
 | |
| from airflow import DAG
 | |
| 
 | |
| try:
 | |
|     from airflow.operators.python import PythonOperator
 | |
| except ModuleNotFoundError:
 | |
|     from airflow.operators.python_operator import PythonOperator
 | |
| 
 | |
| from metadata.config.common import load_config_file
 | |
| from metadata.ingestion.api.workflow import Workflow
 | |
| from airflow.utils.dates import days_ago
 | |
| 
 | |
| default_args = {
 | |
|     "owner": "user_name",
 | |
|     "email": ["username@org.com"],
 | |
|     "email_on_failure": False,
 | |
|     "retries": 3,
 | |
|     "retry_delay": timedelta(minutes=5),
 | |
|     "execution_timeout": timedelta(minutes=60)
 | |
| }
 | |
| 
 | |
| config = """
 | |
| <your YAML configuration>
 | |
| """
 | |
| 
 | |
| def metadata_ingestion_workflow():
 | |
|     workflow_config = yaml.safe_load(config)
 | |
|     workflow = Workflow.create(workflow_config)
 | |
|     workflow.execute()
 | |
|     workflow.raise_from_status()
 | |
|     workflow.print_status()
 | |
|     workflow.stop()
 | |
| 
 | |
| with DAG(
 | |
|     "sample_data",
 | |
|     default_args=default_args,
 | |
|     description="An example DAG which runs a OpenMetadata ingestion workflow",
 | |
|     start_date=days_ago(1),
 | |
|     is_paused_upon_creation=False,
 | |
|     schedule_interval='*/5 * * * *',
 | |
|     catchup=False,
 | |
| ) as dag:
 | |
|     ingest_task = PythonOperator(
 | |
|         task_id="ingest_using_recipe",
 | |
|         python_callable=metadata_ingestion_workflow,
 | |
|     )
 | |
| ```
 | |
| 
 | |
| Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will
 | |
| be able to extract metadata from different sources.
 | 
