mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-09-24 08:19:38 +00:00
184 lines
5.8 KiB
Python
184 lines
5.8 KiB
Python
# Copyright 2025 Collate
|
|
# Licensed under the Collate Community License, Version 1.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/LICENSE
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Classifier for PII detection and sensitivity tagging.
|
|
"""
|
|
from abc import ABC, abstractmethod
|
|
from collections import defaultdict
|
|
from typing import (
|
|
Any,
|
|
DefaultDict,
|
|
Dict,
|
|
Generic,
|
|
Hashable,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Set,
|
|
TypeVar,
|
|
final,
|
|
)
|
|
|
|
from presidio_analyzer import AnalyzerEngine
|
|
|
|
from metadata.generated.schema.entity.data.table import DataType
|
|
from metadata.pii.algorithms.column_patterns import get_pii_column_name_patterns
|
|
from metadata.pii.algorithms.feature_extraction import (
|
|
extract_pii_from_column_names,
|
|
extract_pii_tags,
|
|
is_non_pii_datatype,
|
|
split_column_name,
|
|
)
|
|
from metadata.pii.algorithms.preprocessing import preprocess_values
|
|
from metadata.pii.algorithms.presidio_patches import (
|
|
combine_patchers,
|
|
date_time_patcher,
|
|
url_patcher,
|
|
)
|
|
from metadata.pii.algorithms.presidio_utils import (
|
|
build_analyzer_engine,
|
|
set_presidio_logger_level,
|
|
)
|
|
from metadata.pii.algorithms.tags import PIISensitivityTag, PIITag
|
|
|
|
T = TypeVar("T", bound=Hashable)
|
|
|
|
|
|
class ColumnClassifier(ABC, Generic[T]):
|
|
"""
|
|
Base class for column classifiers.
|
|
This class defines the interface for classifiers that predict the class
|
|
of a column based on its data and metadata.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def predict_scores(
|
|
self,
|
|
sample_data: Sequence[Any],
|
|
column_name: Optional[str] = None,
|
|
column_data_type: Optional[DataType] = None,
|
|
) -> Mapping[T, float]:
|
|
"""
|
|
Predict the scores for the given column and sample data of the column.
|
|
The scores are a mapping of class labels to their respective scores:
|
|
higher scores indicate a higher likelihood of the class for the given inputs.
|
|
"""
|
|
|
|
|
|
# Implementations
|
|
|
|
|
|
@final
|
|
class HeuristicPIIClassifier(ColumnClassifier[PIITag]):
|
|
"""
|
|
Heuristic PII Column Classifier
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
column_name_contribution: float = 0.5,
|
|
score_cutoff: float = 0.1,
|
|
relative_cardinality_cutoff: float = 0.01,
|
|
):
|
|
set_presidio_logger_level()
|
|
self._presidio_analyzer: AnalyzerEngine = build_analyzer_engine()
|
|
self._column_name_patterns = get_pii_column_name_patterns()
|
|
|
|
self._column_name_contribution = column_name_contribution
|
|
self._score_cutoff = score_cutoff
|
|
self._relative_cardinality_cutoff = relative_cardinality_cutoff
|
|
|
|
def predict_scores(
|
|
self,
|
|
sample_data: Sequence[Any],
|
|
column_name: Optional[str] = None,
|
|
column_data_type: Optional[DataType] = None,
|
|
) -> Mapping[PIITag, float]:
|
|
if column_data_type is not None and is_non_pii_datatype(column_data_type):
|
|
return {}
|
|
|
|
str_values = preprocess_values(sample_data)
|
|
|
|
if not str_values:
|
|
return {}
|
|
|
|
# Relative cardinality test
|
|
unique_values = set(str_values)
|
|
|
|
if len(unique_values) / len(str_values) < self._relative_cardinality_cutoff:
|
|
return {}
|
|
context = split_column_name(column_name) if column_name else None
|
|
|
|
content_results = extract_pii_tags(
|
|
self._presidio_analyzer,
|
|
str_values,
|
|
context=context,
|
|
recognizer_result_patcher=combine_patchers(date_time_patcher, url_patcher),
|
|
)
|
|
|
|
column_name_matches: Set[PIITag] = set()
|
|
|
|
if column_name is not None:
|
|
column_name_matches = extract_pii_from_column_names(
|
|
column_name, patterns=self._column_name_patterns
|
|
)
|
|
|
|
final_results: Dict[PIITag, float] = {}
|
|
|
|
for tag, score in content_results.items():
|
|
final_score = score
|
|
if tag in column_name_matches:
|
|
final_score += self._column_name_contribution
|
|
# Apply the score cutoff
|
|
if final_score >= self._score_cutoff:
|
|
final_results[tag] = final_score
|
|
|
|
return final_results
|
|
|
|
|
|
class PIISensitiveClassifier(ColumnClassifier[PIISensitivityTag]):
|
|
"""
|
|
Implements a classifier for PII sensitivity tags based on a given
|
|
PII column classifier. If no classifier is provided, it defaults to
|
|
using the HeuristicPIIColumnClassifier.
|
|
"""
|
|
|
|
def __init__(self, classifier: Optional[ColumnClassifier[PIITag]] = None):
|
|
self.classifier: ColumnClassifier[PIITag] = (
|
|
classifier or HeuristicPIIClassifier()
|
|
)
|
|
|
|
def predict_scores(
|
|
self,
|
|
sample_data: Sequence[Any],
|
|
column_name: Optional[str] = None,
|
|
column_data_type: Optional[DataType] = None,
|
|
) -> Mapping[PIISensitivityTag, float]:
|
|
pii_tags = self.classifier.predict_scores(
|
|
sample_data, column_name, column_data_type
|
|
)
|
|
results: DefaultDict[PIISensitivityTag, float] = defaultdict(float)
|
|
counts: DefaultDict[PIISensitivityTag, int] = defaultdict(int)
|
|
|
|
for tag, score in pii_tags.items():
|
|
# Convert PIITag to PIISensitivityTag
|
|
pii_sensitivity = tag.sensitivity()
|
|
results[pii_sensitivity] += score
|
|
counts[pii_sensitivity] += 1
|
|
|
|
# Normalize the scores
|
|
for tag in results:
|
|
if counts[tag] > 0:
|
|
results[tag] /= counts[tag]
|
|
|
|
return results
|