Teddy 1cbdfb3ae7
Fixes #12601 - column filter for profiler workflow (#13535)
* fix: sample data ingestion to match entity profiler column setting

* fix: python linting

* fix: updated fn call

* fix: added logic to handle json filed in datalake connector

* fix: handle NA values in parsing

* fix: reverted sampler changes from #13338

* fix: reverted metric changes from #13338

* fix: added datalake profiler ingestion test

* fix: python linting

* fix: removed normalization of json blob in NoSQL db
2023-10-12 14:51:38 +02:00

379 lines
12 KiB
Python

# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=arguments-differ
"""
Interfaces with database for all database engine
supporting sqlalchemy abstraction layer
"""
import traceback
from collections import defaultdict
from copy import deepcopy
from datetime import datetime, timezone
from typing import Dict, List, Optional
from sqlalchemy import Column
from metadata.generated.schema.entity.data.table import TableData
from metadata.generated.schema.entity.services.connections.database.datalakeConnection import (
DatalakeConnection,
)
from metadata.mixins.pandas.pandas_mixin import PandasInterfaceMixin
from metadata.profiler.interface.profiler_interface import ProfilerInterface
from metadata.profiler.metrics.core import MetricTypes
from metadata.profiler.metrics.registry import Metrics
from metadata.profiler.processor.sampler.sampler_factory import sampler_factory_
from metadata.readers.dataframe.models import DatalakeTableSchemaWrapper
from metadata.utils.constants import COMPLEX_COLUMN_SEPARATOR
from metadata.utils.datalake.datalake_utils import fetch_col_types, fetch_dataframe
from metadata.utils.logger import profiler_interface_registry_logger
from metadata.utils.sqa_like_column import SQALikeColumn
logger = profiler_interface_registry_logger()
class PandasProfilerInterface(ProfilerInterface, PandasInterfaceMixin):
"""
Interface to interact with registry supporting
sqlalchemy.
"""
# pylint: disable=too-many-arguments
def __init__(
self,
service_connection_config,
ometa_client,
entity,
profile_sample_config,
source_config,
sample_query,
table_partition_config,
thread_count: int = 5,
timeout_seconds: int = 43200,
**kwargs,
):
"""Instantiate Pandas Interface object"""
super().__init__(
service_connection_config,
ometa_client,
entity,
profile_sample_config,
source_config,
sample_query,
table_partition_config,
thread_count,
timeout_seconds,
**kwargs,
)
self.client = self.connection.client
self.dfs = self._convert_table_to_list_of_dataframe_objects()
self.sampler = self._get_sampler()
self.complex_dataframe_sample = deepcopy(self.sampler.random_sample())
def _convert_table_to_list_of_dataframe_objects(self):
"""From a table entity, return the corresponding dataframe object
Returns:
List[DataFrame]
"""
data = fetch_dataframe(
config_source=self.service_connection_config.configSource,
client=self.client,
file_fqn=DatalakeTableSchemaWrapper(
key=self.table_entity.name.__root__,
bucket_name=self.table_entity.databaseSchema.name,
file_extension=self.table_entity.fileFormat,
),
)
if not data:
raise TypeError(f"Couldn't fetch {self.table_entity.name.__root__}")
return data
def _get_sampler(self):
"""Get dataframe sampler from config"""
return sampler_factory_.create(
DatalakeConnection.__name__,
client=self.client,
table=self.dfs,
profile_sample_config=self.profile_sample_config,
partition_details=self.partition_details,
profile_sample_query=self.profile_query,
)
def _compute_table_metrics(
self,
metrics: List[Metrics],
runner: List,
*args,
**kwargs,
):
"""Given a list of metrics, compute the given results
and returns the values
Args:
metrics: list of metrics to compute
Returns:
dictionnary of results
"""
import pandas as pd # pylint: disable=import-outside-toplevel
try:
row_dict = {}
df_list = [df.where(pd.notnull(df), None) for df in runner]
for metric in metrics:
row_dict[metric.name()] = metric().df_fn(df_list)
return row_dict
except Exception as exc:
logger.debug(traceback.format_exc())
logger.warning(f"Error trying to compute profile for {exc}")
raise RuntimeError(exc)
def _compute_static_metrics(
self,
metrics: List[Metrics],
runner: List,
column,
*args,
**kwargs,
):
"""Given a list of metrics, compute the given results
and returns the values
Args:
column: the column to compute the metrics against
metrics: list of metrics to compute
Returns:
dictionnary of results
"""
import pandas as pd # pylint: disable=import-outside-toplevel
try:
row_dict = {}
for metric in metrics:
metric_resp = metric(column).df_fn(runner)
row_dict[metric.name()] = (
None if pd.isnull(metric_resp) else metric_resp
)
return row_dict
except Exception as exc:
logger.debug(
f"{traceback.format_exc()}\nError trying to compute profile for {exc}"
)
raise RuntimeError(exc)
def _compute_query_metrics(
self,
metric: Metrics,
runner: List,
column,
*args,
**kwargs,
):
"""Given a list of metrics, compute the given results
and returns the values
Args:
column: the column to compute the metrics against
metrics: list of metrics to compute
Returns:
dictionnary of results
"""
col_metric = None
col_metric = metric(column).df_fn(runner)
if not col_metric:
return None
return {metric.name(): col_metric}
def _compute_window_metrics(
self,
metrics: List[Metrics],
runner: List,
column,
*args,
**kwargs,
):
"""
Given a list of metrics, compute the given results
and returns the values
"""
try:
metric_values = {}
for metric in metrics:
metric_values[metric.name()] = metric(column).df_fn(runner)
return metric_values if metric_values else None
except Exception as exc:
logger.debug(traceback.format_exc())
logger.warning(f"Unexpected exception computing metrics: {exc}")
return None
def _compute_system_metrics(
self,
metrics: Metrics,
runner: List,
*args,
**kwargs,
):
"""
Given a list of metrics, compute the given results
and returns the values
"""
return None # to be implemented
def compute_metrics(
self,
metrics,
metric_type,
column,
table,
):
"""Run metrics in processor worker"""
logger.debug(f"Running profiler for {table}")
try:
row = None
if self.complex_dataframe_sample:
row = self._get_metric_fn[metric_type.value](
metrics,
self.complex_dataframe_sample,
column=column,
)
except Exception as exc:
name = f"{column if column is not None else table}"
error = f"{name} metric_type.value: {exc}"
logger.error(error)
self.status.failed_profiler(error, traceback.format_exc())
row = None
if column is not None:
column = column.name
self.status.scanned(f"{table.name.__root__}.{column}")
else:
self.status.scanned(table.name.__root__)
return row, column, metric_type.value
def fetch_sample_data(self, table, columns: SQALikeColumn) -> TableData:
"""Fetch sample data from database
Args:
table: ORM declarative table
Returns:
TableData: sample table data
"""
sampler = self._get_sampler()
return sampler.fetch_sample_data(columns)
def get_composed_metrics(
self, column: Column, metric: Metrics, column_results: Dict
):
"""Given a list of metrics, compute the given results
and returns the values
Args:
column: the column to compute the metrics against
metric: list of metrics to compute
column_results: computed values for the column
Returns:
dictionary of results
"""
try:
return metric(column).fn(column_results)
except Exception as exc:
logger.debug(traceback.format_exc())
logger.warning(f"Unexpected exception computing metrics: {exc}")
return None
def get_hybrid_metrics(
self, column: Column, metric: Metrics, column_results: Dict, **kwargs
):
"""Given a list of metrics, compute the given results
and returns the values
Args:
column: the column to compute the metrics against
metric: list of metrics to compute
column_results: computed values for the column
Returns:
dictionary of results
"""
try:
return metric(column).df_fn(column_results, self.complex_dataframe_sample)
except Exception as exc:
logger.debug(traceback.format_exc())
logger.warning(f"Unexpected exception computing metrics: {exc}")
return None
def get_all_metrics(
self,
metric_funcs: list,
):
"""get all profiler metrics"""
profile_results = {"table": {}, "columns": defaultdict(dict)}
metric_list = [
self.compute_metrics(*metric_func) for metric_func in metric_funcs
]
for metric_result in metric_list:
profile, column, metric_type = metric_result
if profile:
if metric_type == MetricTypes.Table.value:
profile_results["table"].update(profile)
if metric_type == MetricTypes.System.value:
profile_results["system"] = profile
else:
if profile:
profile_results["columns"][column].update(
{
"name": column,
"timestamp": int(
datetime.now(tz=timezone.utc).timestamp() * 1000
),
**profile,
}
)
return profile_results
@property
def table(self):
"""OM Table entity"""
return self.table_entity
def get_columns(self) -> List[Optional[SQALikeColumn]]:
"""Get SQALikeColumns for datalake to be passed for metric computation"""
sqalike_columns = []
if self.complex_dataframe_sample:
for column_name in self.complex_dataframe_sample[0].columns:
complex_col_name = None
if COMPLEX_COLUMN_SEPARATOR in column_name:
complex_col_name = ".".join(
column_name.split(COMPLEX_COLUMN_SEPARATOR)[1:]
)
if complex_col_name:
for df in self.complex_dataframe_sample:
df.rename(
columns={column_name: complex_col_name}, inplace=True
)
column_name = complex_col_name or column_name
sqalike_columns.append(
SQALikeColumn(
column_name,
fetch_col_types(self.complex_dataframe_sample[0], column_name),
)
)
return sqalike_columns
return []
def close(self):
"""Nothing to close with pandas"""