
* Delete old docs and rename the openmetadata-docs-v1 to openmetadata-docs * Delete old docs and rename the openmetadata-docs-v1 to openmetadata-docs * Delete old docs and rename the openmetadata-docs-v1 to openmetadata-docs
14 KiB
title | slug |
---|---|
Run Datalake Connector using the CLI | /connectors/database/datalake/cli |
Run Datalake using the metadata CLI
{% multiTablesWrapper %}
Feature | Status |
---|---|
Stage | PROD |
Metadata | {% icon iconName="check" /%} |
Query Usage | {% icon iconName="cross" /%} |
Data Profiler | {% icon iconName="check" /%} |
Data Quality | {% icon iconName="check" /%} |
Lineage | {% icon iconName="cross" /%} |
DBT | {% icon iconName="check" /%} |
Supported Versions | -- |
Feature | Status |
---|---|
Lineage | {% icon iconName="cross" /%} |
Table-level | {% icon iconName="cross" /%} |
Column-level | {% icon iconName="cross" /%} |
{% /multiTablesWrapper %}
In this section, we provide guides and references to use the Datalake connector.
Configure and schedule Datalake metadata and profiler workflows from the OpenMetadata UI:
Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Note: Datalake connector supports extracting metadata from file types JSON
, CSV
, TSV
& Parquet
.
S3 Permissions
To execute metadata extraction AWS account should have enough access to fetch required data. The Bucket Policy in AWS requires at least these permissions:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListBucket"
],
"Resource": [
"arn:aws:s3:::<my bucket>",
"arn:aws:s3:::<my bucket>/*"
]
}
]
}
Python Requirements
If running OpenMetadata version greater than 0.13, you will need to install the Datalake ingestion for GCS or S3:
S3 installation
pip3 install "openmetadata-ingestion[datalake-s3]"
GCS installation
pip3 install "openmetadata-ingestion[datalake-gcs]"
Azure installation
pip3 install "openmetadata-ingestion[datalake-azure]"
If version <0.13
You will be installing the requirements together for S3 and GCS
pip3 install "openmetadata-ingestion[datalake]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema.
1. Define the YAML Config
Source Configuration - Source Config using AWS S3
This is a sample config for Datalake using AWS S3:
{% codePreview %}
{% codeInfoContainer %}
Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
- awsAccessKeyId: Enter your secure access key ID for your DynamoDB connection. The specified key ID should be authorized to read all databases you want to include in the metadata ingestion workflow.
- awsSecretAccessKey: Enter the Secret Access Key (the passcode key pair to the key ID from above).
- awsRegion: Specify the region in which your DynamoDB is located. This setting is required even if you have configured a local AWS profile.
- schemaFilterPattern and tableFilternPattern: Note that the
schemaFilterPattern
andtableFilterPattern
both support regex asinclude
orexclude
. E.g.,
{% /codeInfo %}
Source Configuration - Source Config
{% codeInfo srNumber=2 %}
The sourceConfig
is defined here:
markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.
includeTables: true or false, to ingest table data. Default is true.
includeViews: true or false, to ingest views definitions.
databaseFilterPattern, schemaFilterPattern, tableFilternPattern: Note that the they support regex as include or exclude. E.g.,
{% /codeInfo %}
Sink Configuration
{% codeInfo srNumber=3 %}
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
{% /codeInfo %}
Workflow Configuration
{% codeInfo srNumber=4 %}
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
awsAccessKeyId: aws access key id
awsSecretAccessKey: aws secret access key
awsRegion: aws region
bucketName: bucket name
prefix: prefix
sourceConfig:
config:
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
{% /codeBlock %}
{% /codePreview %}
This is a sample config for Datalake using GCS:
{% codePreview %}
{% codeInfoContainer %}
Source Configuration - Service Connection
{% codeInfo srNumber=5 %}
- type: Credentials type, e.g.
service_account
. - projectId
- privateKey
- privateKeyId
- clientEmail
- clientId
- authUri: https://accounts.google.com/o/oauth2/auth by default
- tokenUri: https://oauth2.googleapis.com/token by default
- authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs by default
- clientX509CertUrl
- bucketName: name of the bucket in GCS
- Prefix: prefix in gcs bucket
{% /codeInfo %}
Source Configuration - Source Config
{% codeInfo srNumber=6 %}
The sourceConfig
is defined here:
markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.
includeTables: true or false, to ingest table data. Default is true.
includeViews: true or false, to ingest views definitions.
databaseFilterPattern, schemaFilterPattern, tableFilternPattern: Note that the they support regex as include or exclude. E.g.,
{% /codeInfo %}
Sink Configuration
{% codeInfo srNumber=7 %}
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
{% /codeInfo %}
Workflow Configuration
{% codeInfo srNumber=8 %}
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
gcsConfig:
type: type of account
projectId: project id
privateKeyId: private key id
privateKey: private key
clientEmail: client email
clientId: client id
authUri: https://accounts.google.com/o/oauth2/auth
tokenUri: https://oauth2.googleapis.com/token
authProviderX509CertUrl: https://www.googleapis.com/oauth2/v1/certs
clientX509CertUrl: clientX509 Certificate Url
bucketName: bucket name
prefix: prefix
sourceConfig:
config:
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
{% /codeBlock %}
{% /codePreview %}
This is a sample config for Datalake using Azure:
{% codePreview %}
{% codeInfoContainer %}
Source Configuration - Service Connection
{% codeInfo srNumber=9 %}
- Client ID : Client ID of the data storage account
- Client Secret : Client Secret of the account
- Tenant ID : Tenant ID under which the data storage account falls
- Account Name : Account Name of the data Storage
{% /codeInfo %}
Source Configuration - Source Config
{% codeInfo srNumber=10 %}
The sourceConfig
is defined here:
markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.
includeTables: true or false, to ingest table data. Default is true.
includeViews: true or false, to ingest views definitions.
databaseFilterPattern, schemaFilterPattern, tableFilternPattern: Note that the they support regex as include or exclude. E.g.,
{% /codeInfo %}
Sink Configuration
{% codeInfo srNumber=11 %}
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
{% /codeInfo %}
Workflow Configuration
{% codeInfo srNumber=12 %}
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
# Datalake with Azure
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
clientId: client-id
clientSecret: client-secret
tenantId: tenant-id
accountName: account-name
prefix: prefix
sourceConfig:
config:
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
{% /codeBlock %}
{% /codePreview %}
Workflow Configs for Security Provider
We support different security providers. You can find their definitions here.
Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
- You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc link.
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
metadata ingest -c <path-to-yaml>
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.
dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage here.