14 KiB
title | slug |
---|---|
Run MariaDB Connector using the CLI | /connectors/database/mariadb/cli |
Run MariaDB using the metadata CLI
{% multiTablesWrapper %}
Feature | Status |
---|---|
Stage | PROD |
Metadata | {% icon iconName="check" /%} |
Query Usage | {% icon iconName="cross" /%} |
Data Profiler | {% icon iconName="check" /%} |
Data Quality | {% icon iconName="check" /%} |
Lineage | Partially via Views |
DBT | {% icon iconName="cross" /%} |
Supported Versions | -- |
Feature | Status |
---|---|
Lineage | Partially via Views |
Table-level | {% icon iconName="check" /%} |
Column-level | {% icon iconName="check" /%} |
{% /multiTablesWrapper %}
In this section, we provide guides and references to use the MariaDB connector.
Configure and schedule MariaDB metadata and profiler workflows from the OpenMetadata UI:
Requirements
{%inlineCallout icon="description" bold="OpenMetadata 0.12 or later" href="/deployment"%} To deploy OpenMetadata, check the Deployment guides. {%/inlineCallout%}
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the MariaDB ingestion, you will need to install:
pip3 install "openmetadata-ingestion[mariadb]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to MariaDB.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
{% codePreview %}
{% codeInfoContainer %}
Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
username: Specify the User to connect to MariaDB. It should have enough privileges to read all the metadata.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
password: Password to connect to MariaDB.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
hostPort: Enter the fully qualified hostname and port number for your MariaDB deployment in the Host and Port field.
{% /codeInfo %}
{% codeInfo srNumber=4 %}
databaseName: Optional name to give to the database in OpenMetadata. If left blank, we will use default as the database name.
{% /codeInfo %}
{% codeInfo srNumber=5 %}
databaseSchema: databaseSchema of the data source. This is optional parameter, if you would like to restrict the metadata reading to a single databaseSchema. When left blank, OpenMetadata Ingestion attempts to scan all the databaseSchema.
{% /codeInfo %}
Source Configuration - Source Config
{% codeInfo srNumber=8 %}
The sourceConfig
is defined here:
markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.
includeTables: true or false, to ingest table data. Default is true.
includeViews: true or false, to ingest views definitions.
databaseFilterPattern, schemaFilterPattern, tableFilternPattern: Note that the they support regex as include or exclude. E.g.,
{% /codeInfo %}
Sink Configuration
{% codeInfo srNumber=9 %}
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
{% /codeInfo %}
Workflow Configuration
{% codeInfo srNumber=10 %}
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
Advanced Configuration
{% codeInfo srNumber=6 %}
Connection Options (Optional): Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
{% /codeInfo %}
{% codeInfo srNumber=7 %}
Connection Arguments (Optional): Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the
authenticator
details in the Connection Arguments as a Key-Value pair as follows:"authenticator" : "sso_login_url"
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
source:
type: mariadb
serviceName: local_mariadb
serviceConnection:
config:
type: MariaDB
username: openmetadata_user
password: openmetadata_password
hostPort: localhost:5432
# databaseName: database
# databaseSchema: schema
# connectionOptions:
# key: value
# connectionArguments:
# key: value
sourceConfig:
config:
type: DatabaseMetadata
markDeletedTables: true
includeTables: true
includeViews: true
# includeTags: true
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - users
# - type_test
# excludes:
# - table3
# - table4
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
{% /codeBlock %}
{% /codePreview %}
Workflow Configs for Security Provider
We support different security providers. You can find their definitions here.
Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.
workflowConfig:
openMetadataServerConfig:
hostPort: "http://localhost:8585/api"
authProvider: openmetadata
securityConfig:
jwtToken: "{bot_jwt_token}"
- You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc link.
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
metadata ingest -c <path-to-yaml>
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.
Data Profiler
The Data Profiler workflow will be using the orm-profiler
processor.
After running a Metadata Ingestion workflow, we can run Data Profiler workflow.
While the serviceName
will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the serviceConnection
details from the server.
1. Define the YAML Config
This is a sample config for the profiler:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=11 %}
Source Configuration - Source Config
You can find all the definitions and types for the sourceConfig
here.
generateSampleData: Option to turn on/off generating sample data.
{% /codeInfo %}
{% codeInfo srNumber=12 %}
profileSample: Percentage of data or no. of rows we want to execute the profiler and tests on.
{% /codeInfo %}
{% codeInfo srNumber=13 %}
threadCount: Number of threads to use during metric computations.
{% /codeInfo %}
{% codeInfo srNumber=14 %}
processPiiSensitive: Optional configuration to automatically tag columns that might contain sensitive information.
{% /codeInfo %}
{% codeInfo srNumber=15 %}
confidence: Set the Confidence value for which you want the column to be marked
{% /codeInfo %}
{% codeInfo srNumber=16 %}
timeoutSeconds: Profiler Timeout in Seconds
{% /codeInfo %}
{% codeInfo srNumber=17 %}
databaseFilterPattern: Regex to only fetch databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=18 %}
schemaFilterPattern: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=19 %}
tableFilterPattern: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=20 %}
Processor Configuration
Choose the orm-profiler
. Its config can also be updated to define tests from the YAML itself instead of the UI:
tableConfig: tableConfig
allows you to set up some configuration at the table level.
{% /codeInfo %}
{% codeInfo srNumber=21 %}
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
{% /codeInfo %}
{% codeInfo srNumber=22 %}
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
source:
type: mariadb
serviceName: local_mariadb
sourceConfig:
config:
type: Profiler
generateSampleData: true
# profileSample: 85
# threadCount: 5
processPiiSensitive: false
# confidence: 80
# timeoutSeconds: 43200
# databaseFilterPattern:
# includes:
# - database1
# - database2
# excludes:
# - database3
# - database4
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <table fqn>
# profileSample: <number between 0 and 99> # default
# profileSample: <number between 0 and 99> # default will be 100 if omitted
# profileQuery: <query to use for sampling data for the profiler>
# columnConfig:
# excludeColumns:
# - <column name>
# includeColumns:
# - columnName: <column name>
# - metrics:
# - MEAN
# - MEDIAN
# - ...
# partitionConfig:
# enablePartitioning: <set to true to use partitioning>
# partitionColumnName: <partition column name. Must be a timestamp or datetime/date field type>
# partitionInterval: <partition interval>
# partitionIntervalUnit: <YEAR, MONTH, DAY, HOUR>
sink:
type: metadata-rest
config: {}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
{% /codeBlock %}
{% /codePreview %}
- You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from here
2. Run with the CLI
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
metadata profile -c <path-to-yaml>
Note now instead of running ingest
, we are using the profile
command to select the Profiler workflow.
dbt Integration
{% tilesContainer %}
{% tile icon="mediation" title="dbt Integration" description="Learn more about how to ingest dbt models' definitions and their lineage." link="/connectors/ingestion/workflows/dbt" /%}
{% /tilesContainer %}
Related
{% tilesContainer %}
{% tile title="Ingest with Airflow" description="Configure the ingestion using Airflow SDK" link="/connectors/database/mariadb/airflow" / %}
{% /tilesContainer %}