OpenMetadata/ingestion/tests/integration/datalake/test_datalake_profiler_e2e.py
Imri Paran a3d6c1dd20
MINOR: tests(datalake): use minio (#17805)
* tests(datalake): use minio

1. use minio instead of moto for mimicking s3 behavior.
2. removed moto dependency as it is not compatible with aiobotocore (https://github.com/getmoto/moto/issues/7070#issuecomment-1828484982)

* - moved test_datalake_profiler_e2e.py to datalake/test_profiler
- use minio instead of moto

* fixed tests

* fixed tests

* removed default name for minio container
2024-09-12 07:13:01 +02:00

312 lines
11 KiB
Python

# Copyright 2021 Collate
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test Datalake Profiler workflow
To run this we need OpenMetadata server up and running.
No sample data is required beforehand
"""
import pytest
from ingestion.tests.integration.datalake.conftest import BUCKET_NAME
from metadata.generated.schema.entity.data.table import ColumnProfile, Table
from metadata.utils.time_utils import (
get_beginning_of_day_timestamp_mill,
get_end_of_day_timestamp_mill,
)
from metadata.workflow.profiler import ProfilerWorkflow
from metadata.workflow.workflow_output_handler import WorkflowResultStatus
@pytest.fixture(scope="class", autouse=True)
def before_each(run_ingestion):
pass
class TestDatalakeProfilerTestE2E:
"""datalake profiler E2E test"""
def test_datalake_profiler_workflow(self, ingestion_config, metadata):
ingestion_config["source"]["sourceConfig"]["config"].update(
{
"type": "Profiler",
}
)
ingestion_config["processor"] = {
"type": "orm-profiler",
"config": {},
}
profiler_workflow = ProfilerWorkflow.create(ingestion_config)
profiler_workflow.execute()
status = profiler_workflow.result_status()
profiler_workflow.stop()
assert status == WorkflowResultStatus.SUCCESS
table_profile = metadata.get_profile_data(
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
get_beginning_of_day_timestamp_mill(),
get_end_of_day_timestamp_mill(),
)
column_profile = metadata.get_profile_data(
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".first_name',
get_beginning_of_day_timestamp_mill(),
get_end_of_day_timestamp_mill(),
profile_type=ColumnProfile,
)
assert table_profile.entities
assert column_profile.entities
def test_values_partitioned_datalake_profiler_workflow(
self, metadata, ingestion_config
):
"""Test partitioned datalake profiler workflow"""
ingestion_config["source"]["sourceConfig"]["config"].update(
{
"type": "Profiler",
}
)
ingestion_config["processor"] = {
"type": "orm-profiler",
"config": {
"tableConfig": [
{
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
"partitionConfig": {
"enablePartitioning": "true",
"partitionColumnName": "first_name",
"partitionIntervalType": "COLUMN-VALUE",
"partitionValues": ["John"],
},
}
]
},
}
profiler_workflow = ProfilerWorkflow.create(ingestion_config)
profiler_workflow.execute()
status = profiler_workflow.result_status()
profiler_workflow.stop()
assert status == WorkflowResultStatus.SUCCESS
table = metadata.get_by_name(
entity=Table,
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
fields=["tableProfilerConfig"],
nullable=False,
)
profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile
assert profile.rowCount == 1.0
def test_datetime_partitioned_datalake_profiler_workflow(
self, ingestion_config, metadata
):
"""Test partitioned datalake profiler workflow"""
ingestion_config["source"]["sourceConfig"]["config"].update(
{
"type": "Profiler",
}
)
ingestion_config["processor"] = {
"type": "orm-profiler",
"config": {
"tableConfig": [
{
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
"partitionConfig": {
"enablePartitioning": "true",
"partitionColumnName": "birthdate",
"partitionIntervalType": "TIME-UNIT",
"partitionIntervalUnit": "YEAR",
"partitionInterval": 35,
},
}
],
},
}
profiler_workflow = ProfilerWorkflow.create(ingestion_config)
profiler_workflow.execute()
status = profiler_workflow.result_status()
profiler_workflow.stop()
assert status == WorkflowResultStatus.SUCCESS
table = metadata.get_by_name(
entity=Table,
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
fields=["tableProfilerConfig"],
)
profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile
assert profile.rowCount == 2.0
def test_integer_range_partitioned_datalake_profiler_workflow(
self, ingestion_config, metadata
):
"""Test partitioned datalake profiler workflow"""
ingestion_config["source"]["sourceConfig"]["config"].update(
{
"type": "Profiler",
}
)
ingestion_config["processor"] = {
"type": "orm-profiler",
"config": {
"tableConfig": [
{
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
"profileSample": 100,
"partitionConfig": {
"enablePartitioning": "true",
"partitionColumnName": "age",
"partitionIntervalType": "INTEGER-RANGE",
"partitionIntegerRangeStart": 35,
"partitionIntegerRangeEnd": 44,
},
}
],
},
}
profiler_workflow = ProfilerWorkflow.create(ingestion_config)
profiler_workflow.execute()
status = profiler_workflow.result_status()
profiler_workflow.stop()
assert status == WorkflowResultStatus.SUCCESS
table = metadata.get_by_name(
entity=Table,
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
fields=["tableProfilerConfig"],
)
profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile
assert profile.rowCount == 2.0
def test_datalake_profiler_workflow_with_custom_profiler_config(
self, metadata, ingestion_config
):
"""Test custom profiler config return expected sample and metric computation"""
profiler_metrics = [
"MIN",
"MAX",
"MEAN",
"MEDIAN",
]
id_metrics = ["MIN", "MAX"]
non_metric_values = ["name", "timestamp"]
ingestion_config["source"]["sourceConfig"]["config"].update(
{
"type": "Profiler",
}
)
ingestion_config["processor"] = {
"type": "orm-profiler",
"config": {
"profiler": {
"name": "ingestion_profiler",
"metrics": profiler_metrics,
},
"tableConfig": [
{
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
"columnConfig": {
"includeColumns": [
{"columnName": "id", "metrics": id_metrics},
{"columnName": "age"},
]
},
}
],
},
}
profiler_workflow = ProfilerWorkflow.create(ingestion_config)
profiler_workflow.execute()
status = profiler_workflow.result_status()
profiler_workflow.stop()
assert status == WorkflowResultStatus.SUCCESS
table = metadata.get_by_name(
entity=Table,
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"',
fields=["tableProfilerConfig"],
)
id_profile = metadata.get_profile_data(
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".id',
get_beginning_of_day_timestamp_mill(),
get_end_of_day_timestamp_mill(),
profile_type=ColumnProfile,
).entities
latest_id_profile = max(id_profile, key=lambda o: o.timestamp.root)
id_metric_ln = 0
for metric_name, metric in latest_id_profile:
if metric_name.upper() in id_metrics:
assert metric is not None
id_metric_ln += 1
else:
assert metric is None if metric_name not in non_metric_values else True
assert id_metric_ln == len(id_metrics)
age_profile = metadata.get_profile_data(
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".age',
get_beginning_of_day_timestamp_mill(),
get_end_of_day_timestamp_mill(),
profile_type=ColumnProfile,
).entities
latest_age_profile = max(age_profile, key=lambda o: o.timestamp.root)
age_metric_ln = 0
for metric_name, metric in latest_age_profile:
if metric_name.upper() in profiler_metrics:
assert metric is not None
age_metric_ln += 1
else:
assert metric is None if metric_name not in non_metric_values else True
assert age_metric_ln == len(profiler_metrics)
latest_exc_timestamp = latest_age_profile.timestamp.root
first_name_profile = metadata.get_profile_data(
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".first_name_profile',
get_beginning_of_day_timestamp_mill(),
get_end_of_day_timestamp_mill(),
profile_type=ColumnProfile,
).entities
assert not [
p for p in first_name_profile if p.timestamp.root == latest_exc_timestamp
]
sample_data = metadata.get_sample_data(table)
assert sorted([c.root for c in sample_data.sampleData.columns]) == sorted(
["id", "age"]
)