mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-07-12 03:29:53 +00:00
118 lines
3.1 KiB
Markdown
118 lines
3.1 KiB
Markdown
---
|
|
title: Run Data Insights using Airflow SDK
|
|
slug: /how-to-guides/data-insights/airflow-sdk
|
|
---
|
|
|
|
# Run Data Insights using Airflow SDK
|
|
|
|
## 1. Define the YAML Config
|
|
|
|
This is a sample config for Data Insights:
|
|
|
|
```yaml
|
|
source:
|
|
type: dataInsight
|
|
serviceName: OpenMetadata
|
|
sourceConfig:
|
|
config:
|
|
type: MetadataToElasticSearch
|
|
processor:
|
|
type: data-insight-processor
|
|
config: {}
|
|
sink:
|
|
type: elasticsearch
|
|
config:
|
|
es_host: localhost
|
|
es_port: 9200
|
|
recreate_indexes: false
|
|
workflowConfig:
|
|
loggerLevel: DEBUG
|
|
openMetadataServerConfig:
|
|
hostPort: '<OpenMetadata host and port>'
|
|
authProvider: openmetadata
|
|
securityConfig:
|
|
jwtToken: '{bot_jwt_token}'
|
|
```
|
|
|
|
### Source Configuration - Source Config
|
|
|
|
- To send the metadata to OpenMetadata, it needs to be specified as `type: MetadataToElasticSearch`.
|
|
|
|
### Processor Configuration
|
|
|
|
- To send the metadata to OpenMetadata, it needs to be specified as `type: data-insight-processor`.
|
|
|
|
### Workflow Configuration
|
|
|
|
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
|
|
|
|
For a simple, local installation using our docker containers, this looks like:
|
|
|
|
```yaml
|
|
workflowConfig:
|
|
openMetadataServerConfig:
|
|
hostPort: 'http://localhost:8585/api'
|
|
authProvider: openmetadata
|
|
securityConfig:
|
|
jwtToken: '{bot_jwt_token}'
|
|
```
|
|
|
|
We support different security providers. You can find their definitions [here](https://github.com/open-metadata/OpenMetadata/tree/main/openmetadata-spec/src/main/resources/json/schema/security/client).
|
|
You can find the different implementation of the ingestion below.
|
|
|
|
## 2. Prepare the Data Insights DAG
|
|
|
|
Create a Python file in your Airflow DAGs directory with the following contents:
|
|
|
|
```python
|
|
import pathlib
|
|
import yaml
|
|
from datetime import timedelta
|
|
from airflow import DAG
|
|
from metadata.workflow.data_insight import DataInsightWorkflow
|
|
from metadata.workflow.workflow_output_handler import print_status
|
|
|
|
try:
|
|
from airflow.operators.python import PythonOperator
|
|
except ModuleNotFoundError:
|
|
from airflow.operators.python_operator import PythonOperator
|
|
|
|
from metadata.config.common import load_config_file
|
|
from airflow.utils.dates import days_ago
|
|
|
|
default_args = {
|
|
"owner": "user_name",
|
|
"email": ["username@org.com"],
|
|
"email_on_failure": False,
|
|
"retries": 3,
|
|
"retry_delay": timedelta(minutes=5),
|
|
"execution_timeout": timedelta(minutes=60)
|
|
}
|
|
|
|
config = """
|
|
<your YAML configuration>
|
|
"""
|
|
|
|
def metadata_ingestion_workflow():
|
|
workflow_config = yaml.safe_load(config)
|
|
workflow = DataInsightWorkflow.create(workflow_config)
|
|
workflow.execute()
|
|
workflow.raise_from_status()
|
|
print_status(workflow)
|
|
workflow.stop()
|
|
|
|
with DAG(
|
|
"sample_data",
|
|
default_args=default_args,
|
|
description="An example DAG which runs a OpenMetadata ingestion workflow",
|
|
start_date=days_ago(1),
|
|
is_paused_upon_creation=False,
|
|
schedule_interval='*/5 * * * *',
|
|
catchup=False,
|
|
) as dag:
|
|
ingest_task = PythonOperator(
|
|
task_id="ingest_using_recipe",
|
|
python_callable=metadata_ingestion_workflow,
|
|
)
|
|
```
|