4.2 KiB
title | slug |
---|---|
Run the S3 Datalake Connector Externally | /connectors/database/s3-datalake/yaml |
{% connectorDetailsHeader name="S3 Datalake" stage="PROD" platform="OpenMetadata" availableFeatures=["Metadata", "Data Profiler", "Data Quality"] unavailableFeatures=["Query Usage", "Lineage", "Column-level Lineage", "Owners", "dbt", "Tags", "Stored Procedures"] / %}
In this section, we provide guides and references to use the S3 Datalake connector.
Configure and schedule S3 Datalake metadata and profiler workflows from the OpenMetadata UI:
{% partial file="/v1.6/connectors/external-ingestion-deployment.md" /%}
Requirements
Note: S3 Datalake connector supports extracting metadata from file types JSON
, CSV
, TSV
& Parquet
.
S3 Permissions
To execute metadata extraction AWS account should have enough access to fetch required data. The Bucket Policy in AWS requires at least these permissions:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListBucket"
],
"Resource": [
"arn:aws:s3:::<my bucket>",
"arn:aws:s3:::<my bucket>/*"
]
}
]
}
Python Requirements
{% partial file="/v1.6/connectors/python-requirements.md" /%}
If running OpenMetadata version greater than 0.13, you will need to install the Datalake ingestion for S3:
S3 installation
pip3 install "openmetadata-ingestion[datalake-s3]"
If version <0.13
You will be installing the requirements for S3
pip3 install "openmetadata-ingestion[datalake]"
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Datalake.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema.
1. Define the YAML Config
Source Configuration - Source Config using AWS S3
This is a sample config for Datalake using AWS S3:
{% codePreview %}
{% codeInfoContainer %}
Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
- awsAccessKeyId: Enter your secure access key ID for your DynamoDB connection. The specified key ID should be authorized to read all databases you want to include in the metadata ingestion workflow.
- awsSecretAccessKey: Enter the Secret Access Key (the passcode key pair to the key ID from above).
- awsRegion: Specify the region in which your DynamoDB is located. This setting is required even if you have configured a local AWS profile.
- schemaFilterPattern and tableFilterPattern: Note that the
schemaFilterPattern
andtableFilterPattern
both support regex asinclude
orexclude
. E.g.,
{% /codeInfo %}
{% partial file="/v1.6/connectors/yaml/database/source-config-def.md" /%}
{% partial file="/v1.6/connectors/yaml/ingestion-sink-def.md" /%}
{% partial file="/v1.6/connectors/yaml/workflow-config-def.md" /%}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
source:
type: datalake
serviceName: local_datalake
serviceConnection:
config:
type: Datalake
configSource:
securityConfig:
awsAccessKeyId: aws access key id
awsSecretAccessKey: aws secret access key
awsRegion: aws region
bucketName: bucket name
prefix: prefix
{% partial file="/v1.6/connectors/yaml/database/source-config.md" /%}
{% partial file="/v1.6/connectors/yaml/ingestion-sink.md" /%}
{% partial file="/v1.6/connectors/yaml/workflow-config.md" /%}
{% /codeBlock %}
{% /codePreview %}
{% partial file="/v1.6/connectors/yaml/ingestion-cli.md" /%}
dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage here.