mirror of
https://github.com/open-metadata/OpenMetadata.git
synced 2025-09-01 05:03:10 +00:00

* fix: data sample ingestion bigquery * style: ran python linting * fix: flaky test in topology
261 lines
10 KiB
Python
261 lines
10 KiB
Python
# Copyright 2025 Collate
|
|
# Licensed under the Collate Community License, Version 1.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/LICENSE
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Helper module to handle data sampling
|
|
for the profiler
|
|
"""
|
|
import hashlib
|
|
from typing import List, Optional, Union, cast
|
|
|
|
from sqlalchemy import Column, inspect, text
|
|
from sqlalchemy.orm import DeclarativeMeta, Query
|
|
from sqlalchemy.orm.util import AliasedClass
|
|
from sqlalchemy.schema import Table
|
|
from sqlalchemy.sql.sqltypes import Enum
|
|
|
|
from metadata.generated.schema.entity.data.table import (
|
|
PartitionProfilerConfig,
|
|
ProfileSampleType,
|
|
TableData,
|
|
)
|
|
from metadata.ingestion.connections.session import create_and_bind_thread_safe_session
|
|
from metadata.mixins.sqalchemy.sqa_mixin import SQAInterfaceMixin
|
|
from metadata.profiler.orm.functions.modulo import ModuloFn
|
|
from metadata.profiler.orm.functions.random_num import RandomNumFn
|
|
from metadata.profiler.processor.handle_partition import build_partition_predicate
|
|
from metadata.sampler.sampler_interface import SamplerInterface
|
|
from metadata.utils.constants import UTF_8
|
|
from metadata.utils.helpers import is_safe_sql_query
|
|
from metadata.utils.logger import profiler_interface_registry_logger
|
|
|
|
logger = profiler_interface_registry_logger()
|
|
|
|
RANDOM_LABEL = "random"
|
|
|
|
|
|
def _object_value_for_elem(self, elem):
|
|
"""
|
|
we have mapped DataType.ENUM: sqlalchemy.Enum
|
|
if map by default return None,
|
|
we will always get None because there is no enum map to lookup,
|
|
so what we are doing here is basically trusting the database,
|
|
that it will be storing the correct map key and showing directly that on the UI,
|
|
and in this approach we will be only able to display
|
|
what database has stored (i.e the key) and not the actual value of the same!
|
|
"""
|
|
return self._object_lookup.get(elem, elem) # pylint: disable=protected-access
|
|
|
|
|
|
Enum._object_value_for_elem = _object_value_for_elem # pylint: disable=protected-access
|
|
|
|
|
|
class SQASampler(SamplerInterface, SQAInterfaceMixin):
|
|
"""
|
|
Generates a sample of the data to not
|
|
run the query in the whole table.
|
|
|
|
Args:
|
|
orm_table (Optional[DeclarativeMeta]): ORM Table
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._table = self.build_table_orm(
|
|
self.entity, self.service_connection_config, self.ometa_client
|
|
)
|
|
|
|
@property
|
|
def raw_dataset(self):
|
|
return self._table
|
|
|
|
def get_client(self):
|
|
"""Build the SQA Client"""
|
|
session_factory = create_and_bind_thread_safe_session(self.connection)
|
|
return session_factory()
|
|
|
|
def set_tablesample(self, selectable: Table):
|
|
"""Set the tablesample for the table. To be implemented by the child SQA sampler class
|
|
Args:
|
|
selectable (Table): a selectable table
|
|
"""
|
|
return selectable
|
|
|
|
def _base_sample_query(self, column: Optional[Column], label=None):
|
|
"""Base query for sampling
|
|
|
|
Args:
|
|
column (Optional[Column]): if computing a column metric only sample for the column
|
|
label (_type_, optional):
|
|
|
|
Returns:
|
|
"""
|
|
# only sample the column if we are computing a column metric to limit the amount of data scaned
|
|
selectable = self.set_tablesample(self.raw_dataset.__table__)
|
|
|
|
entity = selectable if column is None else selectable.c.get(column.key)
|
|
with self.get_client() as client:
|
|
if label is not None:
|
|
query = client.query(entity, label)
|
|
else:
|
|
query = client.query(entity)
|
|
|
|
if self.partition_details:
|
|
query = self.get_partitioned_query(query)
|
|
return query
|
|
|
|
def get_sampler_table_name(self) -> str:
|
|
"""Get the base name of the SQA table for sampling.
|
|
We use MD5 as a hashing algorithm to generate a unique name for the table
|
|
keeping its length controlled. Otherwise, we ended up having issues
|
|
with names getting truncated when we add the suffixes to the identifiers
|
|
such as _sample, or _rnd.
|
|
"""
|
|
encoded_name = self.raw_dataset.__tablename__.encode(UTF_8)
|
|
hash_object = hashlib.md5(encoded_name)
|
|
return hash_object.hexdigest()
|
|
|
|
def get_sample_query(self, *, column=None) -> Query:
|
|
"""get query for sample data"""
|
|
if self.sample_config.profileSampleType == ProfileSampleType.PERCENTAGE:
|
|
rnd = self._base_sample_query(
|
|
column,
|
|
(ModuloFn(RandomNumFn(), 100)).label(RANDOM_LABEL),
|
|
).cte(f"{self.get_sampler_table_name()}_rnd")
|
|
with self.get_client() as client:
|
|
session_query = client.query(rnd)
|
|
return session_query.where(
|
|
rnd.c.random <= self.sample_config.profileSample
|
|
).cte(f"{self.get_sampler_table_name()}_sample")
|
|
|
|
with self.get_client() as client:
|
|
table_query = client.query(self.raw_dataset)
|
|
session_query = self._base_sample_query(
|
|
column,
|
|
(ModuloFn(RandomNumFn(), table_query.count())).label(RANDOM_LABEL)
|
|
if self.sample_config.randomizedSample
|
|
else None,
|
|
)
|
|
query = (
|
|
session_query.order_by(RANDOM_LABEL)
|
|
if self.sample_config.randomizedSample
|
|
else session_query
|
|
)
|
|
return query.limit(self.sample_config.profileSample).cte(
|
|
f"{self.get_sampler_table_name()}_rnd"
|
|
)
|
|
|
|
def get_dataset(self, column=None, **__) -> Union[DeclarativeMeta, AliasedClass]:
|
|
"""
|
|
Either return a sampled CTE of table, or
|
|
the full table if no sampling is required.
|
|
"""
|
|
if self.sample_query:
|
|
return self._rdn_sample_from_user_query()
|
|
|
|
if not self.sample_config.profileSample or (
|
|
self.sample_config.profileSampleType == ProfileSampleType.PERCENTAGE
|
|
and self.sample_config.profileSample == 100
|
|
):
|
|
if self.partition_details:
|
|
partitioned = self._partitioned_table()
|
|
return partitioned.cte(f"{self.get_sampler_table_name()}_partitioned")
|
|
|
|
return self.raw_dataset
|
|
|
|
return self.get_sample_query(column=column)
|
|
|
|
def fetch_sample_data(self, columns: Optional[List[Column]] = None) -> TableData:
|
|
"""
|
|
Use the sampler to retrieve sample data rows as per limit given by user
|
|
|
|
Args:
|
|
columns (Optional[List]): List of columns to fetch
|
|
Returns:
|
|
TableData to be added to the Table Entity
|
|
"""
|
|
if self.sample_query:
|
|
return self._fetch_sample_data_from_user_query()
|
|
|
|
# Add new RandomNumFn column
|
|
ds = self.get_dataset()
|
|
if not columns:
|
|
sqa_columns = [col for col in inspect(ds).c if col.name != RANDOM_LABEL]
|
|
else:
|
|
# we can't directly use columns as it is bound to self.raw_dataset and not the rnd table.
|
|
# If we use it, it will result in a cross join between self.raw_dataset and rnd table
|
|
names = [col.name for col in columns]
|
|
sqa_columns = [
|
|
col
|
|
for col in inspect(ds).c
|
|
if col.name != RANDOM_LABEL and col.name in names
|
|
]
|
|
with self.get_client() as client:
|
|
sqa_sample = (
|
|
client.query(*sqa_columns)
|
|
.select_from(ds)
|
|
.limit(self.sample_limit)
|
|
.all()
|
|
)
|
|
return TableData(
|
|
columns=[column.name for column in sqa_columns],
|
|
rows=[list(row) for row in sqa_sample],
|
|
)
|
|
|
|
def _fetch_sample_data_from_user_query(self) -> TableData:
|
|
"""Returns a table data object using results from query execution"""
|
|
if not is_safe_sql_query(self.sample_query):
|
|
raise RuntimeError(f"SQL expression is not safe\n\n{self.sample_query}")
|
|
|
|
with self.get_client() as client:
|
|
rnd = client.execute(f"{self.sample_query}")
|
|
try:
|
|
columns = [col.name for col in rnd.cursor.description]
|
|
except AttributeError:
|
|
columns = list(rnd.keys())
|
|
return TableData(
|
|
columns=columns,
|
|
rows=[list(row) for row in rnd.fetchmany(100)],
|
|
)
|
|
|
|
def _rdn_sample_from_user_query(self) -> Query:
|
|
"""Returns sql alchemy object to use when running profiling"""
|
|
if not is_safe_sql_query(self.sample_query):
|
|
raise RuntimeError(f"SQL expression is not safe\n\n{self.sample_query}")
|
|
|
|
stmt = text(f"{self.sample_query}")
|
|
stmt = stmt.columns(*list(inspect(self.raw_dataset).c))
|
|
with self.get_client() as client:
|
|
return client.query(stmt.subquery()).cte(
|
|
f"{self.get_sampler_table_name()}_user_sampled"
|
|
)
|
|
|
|
def _partitioned_table(self) -> Query:
|
|
"""Return the Query object for partitioned tables"""
|
|
return self.get_partitioned_query()
|
|
|
|
def get_partitioned_query(self, query=None) -> Query:
|
|
"""Return the partitioned query"""
|
|
self.partition_details = cast(
|
|
PartitionProfilerConfig, self.partition_details
|
|
) # satisfying type checker
|
|
partition_filter = build_partition_predicate(
|
|
self.partition_details,
|
|
self.raw_dataset.__table__.c,
|
|
)
|
|
if query is not None:
|
|
return query.filter(partition_filter)
|
|
with self.get_client() as client:
|
|
return client.query(self.raw_dataset).filter(partition_filter)
|
|
|
|
def get_columns(self):
|
|
"""get columns from entity"""
|
|
return list(inspect(self.raw_dataset).c)
|