mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-11-04 12:36:23 +00:00 
			
		
		
		
	* Update path * Prepare sonar properties * Prepare coverage recipes * Add coverage * Simplify pytest * Organise integration tests * Update path * Use setup instead of reqs * Update recipes * Fix PR event to target * Update event_name * Prepare sonar * Run tests & sonar * Use sonarcloud host * Fix compose * Use ingestion token
		
			
				
	
	
		
			104 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
Example extracted from https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html
 | 
						|
 | 
						|
To run this you need to have installed `sklearn` in your environment.
 | 
						|
"""
 | 
						|
 | 
						|
import logging
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import warnings
 | 
						|
from urllib.parse import urlparse
 | 
						|
 | 
						|
import mlflow.sklearn
 | 
						|
import numpy as np
 | 
						|
import pandas as pd
 | 
						|
from mlflow.models import infer_signature
 | 
						|
from sklearn.linear_model import ElasticNet
 | 
						|
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
 | 
						|
from sklearn.model_selection import train_test_split
 | 
						|
 | 
						|
logging.basicConfig(level=logging.WARN)
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
def eval_metrics(actual, pred):
 | 
						|
    rmse = np.sqrt(mean_squared_error(actual, pred))
 | 
						|
    mae = mean_absolute_error(actual, pred)
 | 
						|
    r2 = r2_score(actual, pred)
 | 
						|
    return rmse, mae, r2
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
 | 
						|
    mlflow_uri = "http://localhost:5000"
 | 
						|
    mlflow.set_tracking_uri(mlflow_uri)
 | 
						|
 | 
						|
    os.environ["AWS_ACCESS_KEY_ID"] = "minio"
 | 
						|
    os.environ["AWS_SECRET_ACCESS_KEY"] = "password"
 | 
						|
    os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://localhost:9001"
 | 
						|
 | 
						|
    warnings.filterwarnings("ignore")
 | 
						|
    np.random.seed(40)
 | 
						|
 | 
						|
    # Read the wine-quality csv file from the URL
 | 
						|
    csv_url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
 | 
						|
    try:
 | 
						|
        data = pd.read_csv(csv_url, sep=";")
 | 
						|
    except Exception as e:
 | 
						|
        logger.exception(
 | 
						|
            "Unable to download training & test CSV, check your internet connection. Error: %s",
 | 
						|
            e,
 | 
						|
        )
 | 
						|
 | 
						|
    # Split the data into training and test sets. (0.75, 0.25) split.
 | 
						|
    train, test = train_test_split(data)
 | 
						|
 | 
						|
    # The predicted column is "quality" which is a scalar from [3, 9]
 | 
						|
    train_x = train.drop(["quality"], axis=1)
 | 
						|
    test_x = test.drop(["quality"], axis=1)
 | 
						|
    train_y = train[["quality"]]
 | 
						|
    test_y = test[["quality"]]
 | 
						|
 | 
						|
    alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5
 | 
						|
    l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5
 | 
						|
 | 
						|
    with mlflow.start_run():
 | 
						|
        lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
 | 
						|
        lr.fit(train_x, train_y)
 | 
						|
 | 
						|
        signature = infer_signature(train_x, lr.predict(train_x))
 | 
						|
 | 
						|
        predicted_qualities = lr.predict(test_x)
 | 
						|
 | 
						|
        (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
 | 
						|
 | 
						|
        print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
 | 
						|
        print("  RMSE: %s" % rmse)
 | 
						|
        print("  MAE: %s" % mae)
 | 
						|
        print("  R2: %s" % r2)
 | 
						|
 | 
						|
        mlflow.log_param("alpha", alpha)
 | 
						|
        mlflow.log_param("l1_ratio", l1_ratio)
 | 
						|
        mlflow.log_metric("rmse", rmse)
 | 
						|
        mlflow.log_metric("r2", r2)
 | 
						|
        mlflow.log_metric("mae", mae)
 | 
						|
 | 
						|
        tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
 | 
						|
 | 
						|
        # Model registry does not work with file store
 | 
						|
        if tracking_url_type_store != "file":
 | 
						|
 | 
						|
            # Register the model
 | 
						|
            # There are other ways to use the Model Registry, which depends on the use case,
 | 
						|
            # please refer to the doc for more information:
 | 
						|
            # https://mlflow.org/docs/latest/model-registry.html#api-workflow
 | 
						|
            mlflow.sklearn.log_model(
 | 
						|
                lr,
 | 
						|
                "model",
 | 
						|
                registered_model_name="ElasticnetWineModel",
 | 
						|
                signature=signature,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            mlflow.sklearn.log_model(lr, "model")
 |