512 lines
19 KiB
Python

# Copyright 2025 Collate
# Licensed under the Collate Community License, Version 1.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/LICENSE
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test Airflow processing
"""
from unittest import TestCase
from unittest.mock import patch
import pytest
try:
import airflow # noqa: F401
except ImportError:
pytest.skip("Airflow dependencies not installed", allow_module_level=True)
from metadata.generated.schema.metadataIngestion.workflow import (
OpenMetadataWorkflowConfig,
)
from metadata.ingestion.ometa.ometa_api import OpenMetadata
from metadata.ingestion.source.pipeline.airflow.metadata import AirflowSource
from metadata.ingestion.source.pipeline.airflow.models import (
AirflowDag,
AirflowDagDetails,
)
from metadata.ingestion.source.pipeline.airflow.utils import get_schedule_interval
MOCK_CONFIG = {
"source": {
"type": "airflow",
"serviceName": "test_airflow",
"serviceConnection": {
"config": {
"type": "Airflow",
"hostPort": "https://localhost:8080",
"connection": {"type": "Backend"},
}
},
"sourceConfig": {
"config": {
"type": "PipelineMetadata",
"includeOwners": True,
}
},
},
"sink": {"type": "metadata-rest", "config": {}},
"workflowConfig": {
"openMetadataServerConfig": {
"hostPort": "http://localhost:8585/api",
"authProvider": "openmetadata",
"securityConfig": {"jwtToken": "token"},
},
},
}
SERIALIZED_DAG = {
"__version": 1,
"dag": {
"_dag_id": "test-lineage-253",
"fileloc": "/opt/airflow/dags/lineage-test.py",
"default_args": {
"__var": {
"owner": "my_owner",
"depends_on_past": False,
"email": ["airflow@example.com"],
"email_on_failure": False,
"email_on_retry": False,
"retries": 1,
"retry_delay": {"__var": 1, "__type": "timedelta"},
},
"__type": "dict",
},
"timezone": "UTC",
"catchup": False,
"edge_info": {},
"dataset_triggers": [],
"_description": "An example DAG which simulate dbt run of fct_application_summary for airflow lineage backend",
"_task_group": {
"_group_id": None,
"prefix_group_id": True,
"tooltip": "",
"ui_color": "CornflowerBlue",
"ui_fgcolor": "#000",
"children": {
"task0": ["operator", "task0"],
"task1": ["operator", "task1"],
},
"upstream_group_ids": [],
"downstream_group_ids": [],
"upstream_task_ids": [],
"downstream_task_ids": [],
},
"is_paused_upon_creation": False,
"start_date": 1688860800,
"schedule_interval": None,
"_processor_dags_folder": "/opt/airflow/dags",
"tasks": [
{
"owner": "another_owner",
"retry_delay": 1,
"retries": 1,
"ui_color": "#e8f7e4",
"email": ["airflow@example.com"],
"task_id": "task0",
"email_on_failure": False,
"email_on_retry": False,
"pool": "default_pool",
"downstream_task_ids": ["task1"],
"template_ext": [],
"template_fields_renderers": {},
"inlets": [
{
"__var": {
"tables": ["sample_data.ecommerce_db.shopify.dim_location"]
},
"__type": "dict",
}
],
"template_fields": [],
"ui_fgcolor": "#000",
"_task_type": "EmptyOperator",
"_task_module": "airflow.operators.empty",
"_is_empty": True,
},
{
"outlets": [
{
"__var": {
"tables": ["sample_data.ecommerce_db.shopify.dim_staff"]
},
"__type": "dict",
}
],
"owner": "another_owner",
"retry_delay": 1,
"retries": 1,
"ui_color": "#e8f7e4",
"email": ["airflow@example.com"],
"task_id": "task1",
"email_on_failure": False,
"email_on_retry": False,
"pool": "default_pool",
"downstream_task_ids": [],
"template_ext": [],
"template_fields_renderers": {},
"template_fields": [],
"ui_fgcolor": "#000",
"_task_type": "EmptyOperator",
"_task_module": "airflow.operators.empty",
"_is_empty": True,
},
],
"dag_dependencies": [],
"params": {},
},
}
class TestAirflow(TestCase):
"""
Test Airflow model processing
"""
@patch(
"metadata.ingestion.source.pipeline.pipeline_service.PipelineServiceSource.test_connection"
)
def __init__(self, methodName, test_connection) -> None:
super().__init__(methodName)
test_connection.return_value = False
self.config = OpenMetadataWorkflowConfig.model_validate(MOCK_CONFIG)
# This already validates that the source can be initialized
self.airflow: AirflowSource = AirflowSource.create(
MOCK_CONFIG["source"],
OpenMetadata(self.config.workflowConfig.openMetadataServerConfig),
)
def test_parsing(self):
"""
We can properly pick up Airflow's payload and convert
it to our models
"""
data = SERIALIZED_DAG["dag"]
dag = AirflowDagDetails(
dag_id="id",
fileloc="loc",
data=AirflowDag.model_validate(SERIALIZED_DAG),
max_active_runs=data.get("max_active_runs", None),
description=data.get("_description", None),
start_date=data.get("start_date", None),
tasks=data.get("tasks", []),
schedule_interval=None,
owner=None,
)
self.assertEqual(
dag.tasks[0].inlets,
[
{
"__var": {
"tables": ["sample_data.ecommerce_db.shopify.dim_location"]
},
"__type": "dict",
}
],
)
self.assertEqual(
dag.tasks[1].outlets,
[
{
"__var": {"tables": ["sample_data.ecommerce_db.shopify.dim_staff"]},
"__type": "dict",
}
],
)
def test_get_dag_owners(self):
data = SERIALIZED_DAG["dag"]
# The owner will be the one appearing as owner in most of the tasks
self.assertEqual("another_owner", self.airflow.fetch_dag_owners(data))
# if we monkey-patch the data dict with tasks with different owner counts...
data = {
"tasks": [
{"owner": "my_owner"},
{"owner": "my_owner"},
{"owner": "another_owner"},
]
}
self.assertEqual("my_owner", self.airflow.fetch_dag_owners(data))
# If there are no owners, return None
data = {
"tasks": [{"something": None}, {"another_thing": None}, {"random": None}]
}
self.assertIsNone(self.airflow.fetch_dag_owners(data))
def test_get_schedule_interval(self):
"""
Check the shape of different DAGs
"""
pipeline_data = {"schedule_interval": None}
self.assertIsNone(get_schedule_interval(pipeline_data))
pipeline_data = {"schedule_interval": {"__var": 86400.0, "__type": "timedelta"}}
self.assertEqual(get_schedule_interval(pipeline_data), "1 day, 0:00:00")
pipeline_data = {
"timetable": {
"__type": "airflow.timetables.simple.OnceTimetable",
"__var": {},
}
}
# Handle both scenarios: when Airflow modules are available vs when they're not
result = get_schedule_interval(pipeline_data)
if result == "@once":
# Airflow modules are available, so we get the actual timetable summary
pass # This is the expected behavior when Airflow is available
else:
# Airflow modules are not available, so we fall back to Custom Timetable
self.assertIn("Custom Timetable", result)
self.assertIn("OnceTimetable", result)
pipeline_data = {
"timetable": {
"__type": "airflow.timetables.interval.CronDataIntervalTimetable",
"__var": {"expression": "*/2 * * * *", "timezone": "UTC"},
}
}
self.assertEqual(get_schedule_interval(pipeline_data), "*/2 * * * *")
def test_get_dag_owners_with_serialized_tasks(self):
# Case 1: All tasks have no explicit owner → fallback to default_args
data = {
"default_args": {"__var": {"owner": "default_owner"}},
"tasks": [
{"__var": {"task_id": "t1"}, "__type": "EmptyOperator"},
{"__var": {"task_id": "t2"}, "__type": "EmptyOperator"},
],
}
self.assertEqual("default_owner", self.airflow.fetch_dag_owners(data))
# Case 2: One task explicitly overrides the owner → tie between two owners
data = {
"default_args": {"__var": {"owner": "default_owner"}},
"tasks": [
{
"__var": {"task_id": "t1"},
"__type": "EmptyOperator",
}, # uses default_owner
{
"__var": {"task_id": "t2", "owner": "overridden_owner"},
"__type": "EmptyOperator",
},
],
}
result = self.airflow.fetch_dag_owners(data)
self.assertIn(result, {"default_owner", "overridden_owner"})
# Case 3: One owner is majority -> must return that owner
data = {
"default_args": {"__var": {"owner": "default_owner"}},
"tasks": [
{
"__var": {"task_id": "t1", "owner": "overridden_owner"},
"__type": "EmptyOperator",
},
{
"__var": {"task_id": "t2", "owner": "overridden_owner"},
"__type": "EmptyOperator",
},
{
"__var": {"task_id": "t3", "owner": "another_owner"},
"__type": "EmptyOperator",
},
],
}
self.assertEqual("overridden_owner", self.airflow.fetch_dag_owners(data))
def test_get_schedule_interval_with_dataset_triggered_timetable(self):
"""
Test handling of DatasetTriggeredTimetable which requires datasets argument
"""
pipeline_data = {
"timetable": {
"__type": "airflow.timetables.dataset.DatasetTriggeredTimetable",
"__var": {"datasets": ["dataset1", "dataset2"]},
}
}
# Handle both scenarios: when Airflow modules are available vs when they're not
result = get_schedule_interval(pipeline_data)
if result == "Dataset Triggered":
# Our specific handling for DatasetTriggeredTimetable worked
pass # This is the expected behavior
else:
# Airflow modules are not available, so we fall back to Custom Timetable
self.assertIn("Custom Timetable", result)
self.assertIn("DatasetTriggeredTimetable", result)
def test_get_schedule_interval_with_cron_timetable(self):
"""
Test handling of CronDataIntervalTimetable
"""
pipeline_data = {
"timetable": {
"__type": "airflow.timetables.interval.CronDataIntervalTimetable",
"__var": {"expression": "0 12 * * *", "timezone": "UTC"},
}
}
# Should return the cron expression when available in __var
result = get_schedule_interval(pipeline_data)
if result == "0 12 * * *":
# Expression was available in __var, so we get it directly
pass # This is the expected behavior
else:
# Airflow modules are not available, so we fall back to Custom Timetable
self.assertIn("Custom Timetable", result)
self.assertIn("CronDataIntervalTimetable", result)
def test_get_schedule_interval_with_custom_timetable(self):
"""
Test handling of custom timetable classes that might not have summary attribute
"""
pipeline_data = {
"timetable": {
"__type": "airflow.timetables.custom.CustomTimetable",
"__var": {},
}
}
# Should return a descriptive string with the class name
result = get_schedule_interval(pipeline_data)
self.assertIn("Custom Timetable", result)
self.assertIn("CustomTimetable", result)
def test_get_schedule_interval_with_import_error(self):
"""
Test handling of timetable classes that can't be imported
"""
pipeline_data = {
"timetable": {
"__type": "nonexistent.module.NonExistentTimetable",
"__var": {},
}
}
# Should return a descriptive string with the class name
result = get_schedule_interval(pipeline_data)
self.assertIn("Custom Timetable", result)
self.assertIn("NonExistentTimetable", result)
def test_get_schedule_interval_with_missing_dag_id(self):
"""
Test error handling when _dag_id is missing from pipeline_data
"""
pipeline_data = {
"schedule_interval": "invalid_format",
# Missing _dag_id
}
# The function should return the string "invalid_format" since it's a string schedule_interval
result = get_schedule_interval(pipeline_data)
self.assertEqual("invalid_format", result)
def test_get_schedule_interval_with_none_dag_id(self):
"""
Test error handling when _dag_id is None
"""
pipeline_data = {
"schedule_interval": "invalid_format",
"_dag_id": None,
}
# The function should return the string "invalid_format" since it's a string schedule_interval
result = get_schedule_interval(pipeline_data)
self.assertEqual("invalid_format", result)
@patch("metadata.ingestion.source.pipeline.airflow.metadata.DagModel")
@patch(
"metadata.ingestion.source.pipeline.airflow.metadata.create_and_bind_session"
)
def test_get_pipelines_list_with_is_paused_query(
self, mock_session, mock_dag_model
):
"""
Test that the is_paused column is queried correctly instead of the entire DagModel
"""
# Mock the session and query
mock_session_instance = mock_session.return_value
mock_query = mock_session_instance.query.return_value
mock_filter = mock_query.filter.return_value
mock_scalar = mock_filter.scalar.return_value
# Test case 1: DAG is not paused
mock_scalar.return_value = False
# Create a mock serialized DAG result
mock_serialized_dag = ("test_dag", {"dag": {"tasks": []}}, "/path/to/dag.py")
# Mock the session query for SerializedDagModel
mock_session_instance.query.return_value.select_from.return_value.filter.return_value.limit.return_value.offset.return_value.all.return_value = [
mock_serialized_dag
]
# This would normally be called in get_pipelines_list, but we're testing the specific query
# Verify that the query is constructed correctly
is_paused_result = (
mock_session_instance.query(mock_dag_model.is_paused)
.filter(mock_dag_model.dag_id == "test_dag")
.scalar()
)
# Verify the query was called correctly
mock_session_instance.query.assert_called_with(mock_dag_model.is_paused)
mock_query.filter.assert_called()
mock_filter.scalar.assert_called()
# Test case 2: DAG is paused
mock_scalar.return_value = True
is_paused_result = (
mock_session_instance.query(mock_dag_model.is_paused)
.filter(mock_dag_model.dag_id == "test_dag")
.scalar()
)
self.assertTrue(is_paused_result)
@patch("metadata.ingestion.source.pipeline.airflow.metadata.DagModel")
@patch(
"metadata.ingestion.source.pipeline.airflow.metadata.create_and_bind_session"
)
def test_get_pipelines_list_with_is_paused_query_error(
self, mock_session, mock_dag_model
):
"""
Test error handling when is_paused query fails
"""
# Mock the session to raise an exception
mock_session_instance = mock_session.return_value
mock_session_instance.query.return_value.filter.return_value.scalar.side_effect = Exception(
"Database error"
)
# Create a mock serialized DAG result
mock_serialized_dag = ("test_dag", {"dag": {"tasks": []}}, "/path/to/dag.py")
# Mock the session query for SerializedDagModel
mock_session_instance.query.return_value.select_from.return_value.filter.return_value.limit.return_value.offset.return_value.all.return_value = [
mock_serialized_dag
]
# This would normally be called in get_pipelines_list, but we're testing the error handling
try:
is_paused_result = (
mock_session_instance.query(mock_dag_model.is_paused)
.filter(mock_dag_model.dag_id == "test_dag")
.scalar()
)
except Exception:
# Expected to fail, but in the actual code this would be caught and default to Active
pass
# Verify the query was attempted
mock_session_instance.query.assert_called_with(mock_dag_model.is_paused)