mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-10-31 18:48:35 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Run Elasticsearch Reindex using Airflow SDK
 | |
| slug: /how-to-guides/data-insights/elasticsearch-reindex
 | |
| ---
 | |
| 
 | |
| # Run Elasticsearch Reindex using Airflow SDK
 | |
| 
 | |
| ## 1. Define the YAML Config
 | |
| 
 | |
| This is a sample config for Elasticsearch Reindex:
 | |
| 
 | |
| ```yaml
 | |
| source:
 | |
| source:
 | |
|   type: metadata_elasticsearch
 | |
|   serviceName: openMetadata
 | |
|   serviceConnection:
 | |
|     config:
 | |
|       type: MetadataES
 | |
|   sourceConfig:
 | |
|     config: {}
 | |
| sink:
 | |
|   type: elasticsearch
 | |
|   config:
 | |
|     es_host: localhost
 | |
|     es_port: 9200
 | |
|     recreate_indexes: true
 | |
| workflowConfig:
 | |
|   openMetadataServerConfig:
 | |
|     hostPort: http://localhost:8585/api
 | |
|     authProvider: openmetadata
 | |
|     securityConfig:
 | |
|       jwtToken: "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXBiEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fNr3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3ud-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
 | |
| ```
 | |
| 
 | |
| ### 2. Prepare the Ingestion DAG
 | |
| 
 | |
| Create a Python file in your Airflow DAGs directory with the following contents:
 | |
| 
 | |
| ```python
 | |
| import pathlib
 | |
| import yaml
 | |
| from datetime import timedelta
 | |
| from airflow import DAG
 | |
| 
 | |
| try:
 | |
|     from airflow.operators.python import PythonOperator
 | |
| except ModuleNotFoundError:
 | |
|     from airflow.operators.python_operator import PythonOperator
 | |
| 
 | |
| from metadata.config.common import load_config_file
 | |
| from metadata.workflow.metadata import MetadataWorkflow
 | |
| from metadata.workflow.workflow_output_handler import print_status
 | |
| from airflow.utils.dates import days_ago
 | |
| 
 | |
| default_args = {
 | |
|     "owner": "user_name",
 | |
|     "email": ["username@org.com"],
 | |
|     "email_on_failure": False,
 | |
|     "retries": 3,
 | |
|     "retry_delay": timedelta(minutes=5),
 | |
|     "execution_timeout": timedelta(minutes=60)
 | |
| }
 | |
| 
 | |
| config = """
 | |
| <your YAML configuration>
 | |
| """
 | |
| 
 | |
| def metadata_ingestion_workflow():
 | |
|     workflow_config = yaml.safe_load(config)
 | |
|     workflow = MetadataWorkflow.create(workflow_config)
 | |
|     workflow.execute()
 | |
|     workflow.raise_from_status()
 | |
|     print_status(workflow)
 | |
|     workflow.stop()
 | |
| 
 | |
| with DAG(
 | |
|     "sample_data",
 | |
|     default_args=default_args,
 | |
|     description="An example DAG which runs a OpenMetadata ingestion workflow",
 | |
|     start_date=days_ago(1),
 | |
|     is_paused_upon_creation=False,
 | |
|     schedule_interval='*/5 * * * *',
 | |
|     catchup=False,
 | |
| ) as dag:
 | |
|     ingest_task = PythonOperator(
 | |
|         task_id="ingest_using_recipe",
 | |
|         python_callable=metadata_ingestion_workflow,
 | |
|     )
 | |
| ```
 | 
