mirror of
				https://github.com/open-metadata/OpenMetadata.git
				synced 2025-10-31 10:39:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			475 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			475 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # pylint: disable=line-too-long
 | |
| #  Copyright 2021 Collate
 | |
| #  Licensed under the Apache License, Version 2.0 (the "License");
 | |
| #  you may not use this file except in compliance with the License.
 | |
| #  You may obtain a copy of the License at
 | |
| #  http://www.apache.org/licenses/LICENSE-2.0
 | |
| #  Unless required by applicable law or agreed to in writing, software
 | |
| #  distributed under the License is distributed on an "AS IS" BASIS,
 | |
| #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| #  See the License for the specific language governing permissions and
 | |
| #  limitations under the License.
 | |
| 
 | |
| """
 | |
| Unit tests for datalake source
 | |
| """
 | |
| 
 | |
| from copy import deepcopy
 | |
| from types import SimpleNamespace
 | |
| from unittest import TestCase
 | |
| from unittest.mock import patch
 | |
| 
 | |
| from metadata.generated.schema.entity.data.database import Database
 | |
| from metadata.generated.schema.entity.data.table import Column
 | |
| from metadata.generated.schema.entity.services.databaseService import (
 | |
|     DatabaseConnection,
 | |
|     DatabaseService,
 | |
|     DatabaseServiceType,
 | |
| )
 | |
| from metadata.generated.schema.metadataIngestion.workflow import (
 | |
|     OpenMetadataWorkflowConfig,
 | |
| )
 | |
| from metadata.generated.schema.type.entityReference import EntityReference
 | |
| from metadata.ingestion.source.database.datalake.metadata import DatalakeSource
 | |
| from metadata.readers.dataframe.avro import AvroDataFrameReader
 | |
| from metadata.readers.dataframe.json import JSONDataFrameReader
 | |
| from metadata.utils.datalake.datalake_utils import get_columns
 | |
| 
 | |
| mock_datalake_config = {
 | |
|     "source": {
 | |
|         "type": "datalake",
 | |
|         "serviceName": "local_datalake",
 | |
|         "serviceConnection": {
 | |
|             "config": {
 | |
|                 "type": "Datalake",
 | |
|                 "configSource": {
 | |
|                     "securityConfig": {
 | |
|                         "awsAccessKeyId": "aws_access_key_id",
 | |
|                         "awsSecretAccessKey": "aws_secret_access_key",
 | |
|                         "awsRegion": "us-east-2",
 | |
|                         "endPointURL": "https://endpoint.com/",
 | |
|                     }
 | |
|                 },
 | |
|                 "bucketName": "bucket name",
 | |
|             }
 | |
|         },
 | |
|         "sourceConfig": {
 | |
|             "config": {
 | |
|                 "type": "DatabaseMetadata",
 | |
|                 "schemaFilterPattern": {
 | |
|                     "excludes": [
 | |
|                         "^test.*",
 | |
|                         ".*test$",
 | |
|                     ]
 | |
|                 },
 | |
|             }
 | |
|         },
 | |
|     },
 | |
|     "sink": {"type": "metadata-rest", "config": {}},
 | |
|     "workflowConfig": {
 | |
|         "openMetadataServerConfig": {
 | |
|             "hostPort": "http://localhost:8585/api",
 | |
|             "authProvider": "openmetadata",
 | |
|             "securityConfig": {
 | |
|                 "jwtToken": "eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXBiEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fNr3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3ud-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
 | |
|             },
 | |
|         }
 | |
|     },
 | |
| }
 | |
| 
 | |
| MOCK_S3_SCHEMA = {
 | |
|     "Buckets": [
 | |
|         {"Name": "test_datalake"},
 | |
|         {"Name": "test_gcs"},
 | |
|         {"Name": "s3_test"},
 | |
|         {"Name": "my_bucket"},
 | |
|     ]
 | |
| }
 | |
| 
 | |
| MOCK_GCS_SCHEMA = [
 | |
|     SimpleNamespace(name="test_datalake"),
 | |
|     SimpleNamespace(name="test_gcs"),
 | |
|     SimpleNamespace(name="s3_test"),
 | |
|     SimpleNamespace(name="my_bucket"),
 | |
| ]
 | |
| 
 | |
| EXPECTED_SCHEMA = ["my_bucket"]
 | |
| 
 | |
| 
 | |
| MOCK_DATABASE_SERVICE = DatabaseService(
 | |
|     id="85811038-099a-11ed-861d-0242ac120002",
 | |
|     name="local_datalake",
 | |
|     connection=DatabaseConnection(),
 | |
|     serviceType=DatabaseServiceType.Postgres,
 | |
| )
 | |
| 
 | |
| MOCK_DATABASE = Database(
 | |
|     id="2aaa012e-099a-11ed-861d-0242ac120002",
 | |
|     name="118146679784",
 | |
|     fullyQualifiedName="local_datalake.default",
 | |
|     displayName="118146679784",
 | |
|     description="",
 | |
|     service=EntityReference(
 | |
|         id="85811038-099a-11ed-861d-0242ac120002",
 | |
|         type="databaseService",
 | |
|     ),
 | |
| )
 | |
| 
 | |
| EXAMPLE_JSON_TEST_1 = b"""
 | |
| {"name":"John","age":16,"sex":"M"}
 | |
| {"name":"Milan","age":19,"sex":"M"}
 | |
| """
 | |
| 
 | |
| EXAMPLE_JSON_TEST_2 = b"""
 | |
| {"name":"John","age":16,"sex":"M"}
 | |
| """
 | |
| 
 | |
| EXAMPLE_JSON_TEST_3 = b"""
 | |
| {
 | |
|     "name":"John",
 | |
|     "age":16,
 | |
|     "sex":"M",
 | |
|     "address":{
 | |
|         "city":"Mumbai",
 | |
|         "state":"Maharashtra",
 | |
|         "country":"India",
 | |
|         "coordinates":{
 | |
|             "lat":123,
 | |
|             "lon":123
 | |
|         }
 | |
|     }
 | |
| }
 | |
| """
 | |
| 
 | |
| EXAMPLE_JSON_TEST_4 = b"""
 | |
| [
 | |
|     {"name":"John","age":16,"sex":"M","address":null},
 | |
|     {
 | |
|         "name":"John",
 | |
|         "age":16,
 | |
|         "sex":"M",
 | |
|         "address":{
 | |
|             "city":"Mumbai",
 | |
|             "state":"Maharashtra",
 | |
|             "country":"India",
 | |
|             "coordinates":{
 | |
|                 "lat":123,
 | |
|                 "lon":123
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| ]
 | |
| """
 | |
| 
 | |
| EXAMPLE_JSON_COL_3 = [
 | |
|     Column(
 | |
|         name="name",
 | |
|         dataType="STRING",
 | |
|         dataTypeDisplay="STRING",
 | |
|         displayName="name",
 | |
|     ),
 | |
|     Column(
 | |
|         name="age",
 | |
|         dataType="INT",
 | |
|         dataTypeDisplay="INT",
 | |
|         displayName="age",
 | |
|     ),
 | |
|     Column(
 | |
|         name="sex",
 | |
|         dataType="STRING",
 | |
|         dataTypeDisplay="STRING",
 | |
|         displayName="sex",
 | |
|     ),
 | |
|     Column(
 | |
|         name="address",
 | |
|         dataType="RECORD",
 | |
|         dataTypeDisplay="RECORD",
 | |
|         displayName="address",
 | |
|         children=[
 | |
|             Column(
 | |
|                 name="city",
 | |
|                 dataType="STRING",
 | |
|                 dataTypeDisplay="STRING",
 | |
|             ),
 | |
|             Column(
 | |
|                 name="state",
 | |
|                 dataType="STRING",
 | |
|                 dataTypeDisplay="STRING",
 | |
|             ),
 | |
|             Column(
 | |
|                 name="country",
 | |
|                 dataType="STRING",
 | |
|                 dataTypeDisplay="STRING",
 | |
|             ),
 | |
|             Column(
 | |
|                 name="coordinates",
 | |
|                 dataType="RECORD",
 | |
|                 dataTypeDisplay="RECORD",
 | |
|                 displayName="coordinates",
 | |
|                 children=[
 | |
|                     Column(
 | |
|                         name="lat",
 | |
|                         dataType="INT",
 | |
|                         dataTypeDisplay="INT",
 | |
|                     ),
 | |
|                     Column(
 | |
|                         name="lon",
 | |
|                         dataType="INT",
 | |
|                         dataTypeDisplay="INT",
 | |
|                     ),
 | |
|                 ],
 | |
|             ),
 | |
|         ],
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| 
 | |
| EXAMPLE_JSON_COL_4 = deepcopy(EXAMPLE_JSON_COL_3)
 | |
| EXAMPLE_JSON_COL_4[3].children[3].children = [
 | |
|     Column(
 | |
|         name="lat",
 | |
|         dataType="FLOAT",
 | |
|         dataTypeDisplay="FLOAT",
 | |
|     ),
 | |
|     Column(
 | |
|         name="lon",
 | |
|         dataType="FLOAT",
 | |
|         dataTypeDisplay="FLOAT",
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| EXPECTED_AVRO_COL_1 = [
 | |
|     Column(
 | |
|         name="level",
 | |
|         dataType="RECORD",
 | |
|         children=[
 | |
|             Column(name="uid", dataType="INT", dataTypeDisplay="int"),
 | |
|             Column(name="somefield", dataType="STRING", dataTypeDisplay="string"),
 | |
|             Column(
 | |
|                 name="options",
 | |
|                 dataType="ARRAY",
 | |
|                 dataTypeDisplay="ARRAY<record>",
 | |
|                 arrayDataType="RECORD",
 | |
|                 children=[
 | |
|                     Column(
 | |
|                         name="lvl2_record",
 | |
|                         dataType="RECORD",
 | |
|                         children=[
 | |
|                             Column(
 | |
|                                 name="item1_lvl2",
 | |
|                                 dataType="STRING",
 | |
|                                 dataTypeDisplay="string",
 | |
|                             ),
 | |
|                             Column(
 | |
|                                 name="item2_lvl2",
 | |
|                                 dataType="ARRAY",
 | |
|                                 arrayDataType="RECORD",
 | |
|                                 dataTypeDisplay="ARRAY<record>",
 | |
|                                 children=[
 | |
|                                     Column(
 | |
|                                         name="lvl3_record",
 | |
|                                         dataType="RECORD",
 | |
|                                         children=[
 | |
|                                             Column(
 | |
|                                                 name="item1_lvl3",
 | |
|                                                 dataType="STRING",
 | |
|                                                 dataTypeDisplay="string",
 | |
|                                             ),
 | |
|                                             Column(
 | |
|                                                 name="item2_lvl3",
 | |
|                                                 dataType="STRING",
 | |
|                                                 dataTypeDisplay="string",
 | |
|                                             ),
 | |
|                                         ],
 | |
|                                     ),
 | |
|                                 ],
 | |
|                             ),
 | |
|                         ],
 | |
|                     )
 | |
|                 ],
 | |
|             ),
 | |
|         ],
 | |
|     )
 | |
| ]
 | |
| 
 | |
| 
 | |
| EXPECTED_AVRO_COL_2 = [
 | |
|     Column(
 | |
|         name="twitter_schema",
 | |
|         dataType="RECORD",
 | |
|         children=[
 | |
|             Column(
 | |
|                 name="username",
 | |
|                 dataType="STRING",
 | |
|                 description="Name of the user account on Twitter.com",
 | |
|                 dataTypeDisplay="string",
 | |
|             ),
 | |
|             Column(
 | |
|                 name="tweet",
 | |
|                 dataType="STRING",
 | |
|                 dataTypeDisplay="string",
 | |
|                 description="The content of the user's Twitter message",
 | |
|             ),
 | |
|             Column(
 | |
|                 name="timestamp",
 | |
|                 dataType="LONG",
 | |
|                 dataTypeDisplay="long",
 | |
|                 description="Unix epoch time in seconds",
 | |
|             ),
 | |
|         ],
 | |
|     )
 | |
| ]
 | |
| 
 | |
| AVRO_SCHEMA_FILE = b"""{
 | |
|     "namespace": "openmetadata.kafka",
 | |
|     "name": "level",
 | |
|     "type": "record",
 | |
|     "fields": [
 | |
|         {
 | |
|             "name": "uid",
 | |
|             "type": "int"
 | |
|         },
 | |
|         {
 | |
|             "name": "somefield",
 | |
|             "type": "string"
 | |
|         },
 | |
|         {
 | |
|             "name": "options",
 | |
|             "type": {
 | |
|                 "type": "array",
 | |
|                 "items": {
 | |
|                     "type": "record",
 | |
|                     "name": "lvl2_record",
 | |
|                     "fields": [
 | |
|                         {
 | |
|                             "name": "item1_lvl2",
 | |
|                             "type": "string"
 | |
|                         },
 | |
|                         {
 | |
|                             "name": "item2_lvl2",
 | |
|                             "type": {
 | |
|                                 "type": "array",
 | |
|                                 "items": {
 | |
|                                     "type": "record",
 | |
|                                     "name": "lvl3_record",
 | |
|                                     "fields": [
 | |
|                                         {
 | |
|                                             "name": "item1_lvl3",
 | |
|                                             "type": "string"
 | |
|                                         },
 | |
|                                         {
 | |
|                                             "name": "item2_lvl3",
 | |
|                                             "type": "string"
 | |
|                                         }
 | |
|                                     ]
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     ]
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     ]
 | |
| }"""
 | |
| 
 | |
| AVRO_DATA_FILE = b'Obj\x01\x04\x16avro.schema\xe8\x05{"type":"record","name":"twitter_schema","namespace":"com.miguno.avro","fields":[{"name":"username","type":"string","doc":"Name of the user account on Twitter.com"},{"name":"tweet","type":"string","doc":"The content of the user\'s Twitter message"},{"name":"timestamp","type":"long","doc":"Unix epoch time in seconds"}],"doc:":"A basic schema for storing Twitter messages"}\x14avro.codec\x08null\x00g\xc75)s\xef\xdf\x94\xad\xd3\x00~\x9e\xeb\xff\xae\x04\xc8\x01\x0cmigunoFRock: Nerf paper, scissors is fine.\xb2\xb8\xee\x96\n\x14BlizzardCSFWorks as intended.  Terran is IMBA.\xe2\xf3\xee\x96\ng\xc75)s\xef\xdf\x94\xad\xd3\x00~\x9e\xeb\xff\xae'
 | |
| 
 | |
| 
 | |
| def _get_str_value(data):
 | |
|     if data:
 | |
|         if isinstance(data, str):
 | |
|             return data
 | |
|         return data.value
 | |
| 
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def custom_column_compare(self, other):
 | |
|     return (
 | |
|         self.name == other.name
 | |
|         and self.displayName == other.displayName
 | |
|         and self.description == other.description
 | |
|         and self.dataTypeDisplay == other.dataTypeDisplay
 | |
|         and self.children == other.children
 | |
|         and _get_str_value(self.arrayDataType) == _get_str_value(other.arrayDataType)
 | |
|     )
 | |
| 
 | |
| 
 | |
| class DatalakeUnitTest(TestCase):
 | |
|     """
 | |
|     Datalake Source Unit Tests
 | |
|     """
 | |
| 
 | |
|     @patch(
 | |
|         "metadata.ingestion.source.database.datalake.metadata.DatalakeSource.test_connection"
 | |
|     )
 | |
|     def __init__(self, methodName, test_connection) -> None:
 | |
|         super().__init__(methodName)
 | |
|         test_connection.return_value = False
 | |
|         self.config = OpenMetadataWorkflowConfig.parse_obj(mock_datalake_config)
 | |
|         self.datalake_source = DatalakeSource.create(
 | |
|             mock_datalake_config["source"],
 | |
|             self.config.workflowConfig.openMetadataServerConfig,
 | |
|         )
 | |
|         self.datalake_source.context.__dict__["database"] = MOCK_DATABASE
 | |
|         self.datalake_source.context.__dict__[
 | |
|             "database_service"
 | |
|         ] = MOCK_DATABASE_SERVICE
 | |
| 
 | |
|     def test_s3_schema_filer(self):
 | |
|         self.datalake_source.client.list_buckets = lambda: MOCK_S3_SCHEMA
 | |
|         assert list(self.datalake_source.fetch_s3_bucket_names()) == EXPECTED_SCHEMA
 | |
| 
 | |
|     def test_gcs_schema_filer(self):
 | |
|         self.datalake_source.client.list_buckets = lambda: MOCK_GCS_SCHEMA
 | |
|         assert list(self.datalake_source.fetch_gcs_bucket_names()) == EXPECTED_SCHEMA
 | |
| 
 | |
|     def test_json_file_parse(self):
 | |
|         """
 | |
|         Test json data files
 | |
|         """
 | |
|         import pandas as pd  # pylint: disable=import-outside-toplevel
 | |
| 
 | |
|         sample_dict = {"name": "John", "age": 16, "sex": "M"}
 | |
| 
 | |
|         exp_df_list = pd.json_normalize(
 | |
|             [
 | |
|                 {"name": "John", "age": 16, "sex": "M"},
 | |
|                 {"name": "Milan", "age": 19, "sex": "M"},
 | |
|             ]
 | |
|         )
 | |
|         exp_df_obj = pd.json_normalize(sample_dict)
 | |
| 
 | |
|         actual_df_1 = JSONDataFrameReader.read_from_json(
 | |
|             key="file.json", json_text=EXAMPLE_JSON_TEST_1, decode=True
 | |
|         )[0]
 | |
|         actual_df_2 = JSONDataFrameReader.read_from_json(
 | |
|             key="file.json", json_text=EXAMPLE_JSON_TEST_2, decode=True
 | |
|         )[0]
 | |
| 
 | |
|         assert actual_df_1.compare(exp_df_list).empty
 | |
|         assert actual_df_2.compare(exp_df_obj).empty
 | |
| 
 | |
|         Column.__eq__ = custom_column_compare
 | |
| 
 | |
|         actual_df_3 = JSONDataFrameReader.read_from_json(
 | |
|             key="file.json", json_text=EXAMPLE_JSON_TEST_3, decode=True
 | |
|         )[0]
 | |
|         actual_cols_3 = get_columns(actual_df_3)
 | |
|         assert actual_cols_3 == EXAMPLE_JSON_COL_3
 | |
| 
 | |
|         actual_df_4 = JSONDataFrameReader.read_from_json(
 | |
|             key="file.json", json_text=EXAMPLE_JSON_TEST_4, decode=True
 | |
|         )[0]
 | |
|         actual_cols_4 = get_columns(actual_df_4)
 | |
|         assert actual_cols_4 == EXAMPLE_JSON_COL_4
 | |
| 
 | |
|     def test_avro_file_parse(self):
 | |
|         columns = AvroDataFrameReader.read_from_avro(AVRO_SCHEMA_FILE)
 | |
|         Column.__eq__ = custom_column_compare
 | |
| 
 | |
|         assert EXPECTED_AVRO_COL_1 == columns.columns  # pylint: disable=no-member
 | |
| 
 | |
|         columns = AvroDataFrameReader.read_from_avro(AVRO_DATA_FILE)
 | |
|         assert EXPECTED_AVRO_COL_2 == columns.columns  # pylint: disable=no-member
 | 
